
GitOps / DevOps / AppOps / SRE
Konzepte & Tools

Thomas Siwczak

Version 0.29.3, 21.02.2024

Inhaltsverzeichnis
1. WIP: Aktuelle ToDos . 1

2. WIP: Use Terraform and Ansible to setup K8s . 6

3. Einstieg in DevOps . 8

4. Kaniko . 11

5. Packer.io . 13

6. Skopeo. 15

7. Terraform. 17

8. ArgoCD . 23

9. GitLab Pipelines . 26

10. Gitlab pipelines in advanced. 29

11. Jenkins . 32

12. Tekton . 34

13. Kubernetes. 36

14. k9s . 39

15. kURL . 41

16. Podman. 43

17. Trivy . 44

18. Asciidoctor . 48

19. Hugo . 60

20. Git. 62

21. Semantic Versioning . 72

22. RKE2 - Rancher . 73

23. HAProxy . 75

24. Consul . 78

25. Tmux . 79

26. Vagrant . 82

27. Gegenüberstellung: Ansible, Chef, Puppet und SaltStack. 83

28. WIP: GitOps / DevOps / SRE: Konzepte & Tools . 85

29. WIP: DevOps - Konzepte. 86

30. WIP: Fähigkeiten für einen DevOps-Ingenieur. 88

31. Semantische Versionsbezeichnungen. 89

32. WIP: Ansible Semaphore . 91

33. WIP: Ansible: Eine Einführung und Leitfaden . 92

34. WIP: Best Practices for managing BASH Scripts. 94

35. WIP: Caching. 95

36. WIP: Argo-Rollouts . 96

37. WIP: Argo Workflows . 97

38. WIP: FluxCD . 98

39. WIP: Hetzner - Cloud. 99

40. WIP: Docker . 100

41. WIP: Crossplane. 101

42. WIP: Databases - An Overview. 102

43. WIP: GitLab . 103

44. WIP: Helm . 104

45. WIP: Helm Dashboard . 105

46. WIP: Kubernetes - debug . 106

47. WIP: k3s - Lightweight Kubernetes . 107

48. WIP: K8up - Kubernetes Backup Operator . 108

49. WIP: kOps - Kubernetes Operations . 109

50. WIP: Kind - Kubernetes in Docker. 111

51. WIP: Kubespay . 112

52. WIP: Kubesphere . 113

53. WIP: KubeVela . 114

54. WIP: Loadbalancer for K8s . 115

55. WIP: Rancher . 117

56. WIP: RKE2 - Rancher. 118

57. WIP: Longhorn . 119

58. WIP: Velero . 120

59. WIP: Kubernetes . 121

60. WIP: Kasten. 124

61. WIP: Keycloak. 125

62. WIP: RKE2 - Rancher. 126

63. WIP: Kustomize . 128

64. WIP: Monitoring . 129

65. WIP: OpenLens. 130

66. WIP: Planing - System Blueprints . 131

67. WIP: Python . 132

68. WIP: Quarkus . 133

69. WIP: Teleport . 134

70. WIP: Artifactories . 135

71. WIP: Vaults . 136

72. WIP: Quarkus . 137

73. Sammlung nützlicher Befehle und Scripte . 138

1. WIP: Aktuelle ToDos

1.1. Private

1.1.1. Ideen

• Sheatsheets / häufig genutzte Befehle mit kurzer Erklärung, direkt bei den einzelnen Tools
auflisten

• https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-
9629194.html

1.1.2. Ansible

☐ Verfügbare Versionen von Software-Projekten abfragen und in einer Übersicht anzeigen (am
besten mit Datum der Veroffentlichung)

☐ Benutzte / im Einsatz befindliche Versionen auf einer Übersicht anzeigen

☐ Folgende Produkte sollten angezeigt werden (Gitlab / Gitlab-Runner, rke2, Rancher, Kubernetes,
Harbor, AWX, Dokuwiki, ArgoCD, usw)

1.1.3. Gitlab

☑ Gitlab runner auf Server mit docker compose

☐ Docker Registry aktivieren

☑ Gitlab runner in k8s installieren

☑ Gitlab runner konfigurieren (extra helper image for arm64)

☐ Gitlab runner in k8s testen

☐ Gitlab runner - autoscaler?

☐ Container Registry aktivieren für CI/CD

☐ Gitlab komplexe Pipelines

☐ Gitlab Pipeline import

☐ Gitlab Pipeline über mehrere Projekte?

1.1.4. Hetzner Cloud

☐ Nat Cloud Setup

☐ Ansible over Bastian Host

☐ Default Route

☐ HaProxy Auto Scaling

☐ Terraform with Ansible

1

https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-9629194.html
https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-9629194.html
https://community.hetzner.com/tutorials/how-to-set-up-nat-for-cloud-networks/
https://www.jeffgeerling.com/blog/2022/using-ansible-playbook-ssh-bastion-jump-host
https://www.cyberciti.biz/faq/howto-linux-configuring-default-route-with-ipcommand
https://blog.stefan-koch.name/2021/05/02/load-balancing-auto-scaling-open-source-haproxy
https://www.ansible.com/blog/providing-terraform-with-that-ansible-magic

1.1.5. Convert Asciidoctor Documents to DokuWiki

☐ Asciidoc to docbook or html

☐ Pandoc from html/docbook to Dokuwiki

☐ Output in DokuWiki testen

1.1.6. Other

☐ Full featured k8s for running micro services

☐ Internet Monitor

☐ Scaling Video Encoding

☐ Zero Mailbox

☐ https://ifconfig.me/ip

☐ https://dev.to/ajeetraina/10-kubernetes-visualization-tool-that-you-cant-afford-to-miss-414k

☐ https://picluster.ricsanfre.com/docs/ansible/

☐ https://github.com/wikitops/ansible_kubernetes_argocd/tree/master/roles/argocd/tasks

1.1.7. Ubuntu Autoinstall

☑ autoinstall beim Boot aufrufen - Link

☑ iso anpassen um automatisch autoinstall-file zu laden

☑ was passiert, wenn file nicht gefunden wird? NOTE: Syntax für Grub Boot Menu ⇒ quiet
autoinstall ds=nocloud\;s=http://x.x.x.x

1.1.8. Rancher / Kubernetes

☑ K3S HA testen

☑ Rancher Server v2.5.17 installieren

☑ Dev Cluster Installieren

☑ Rancher Server upgraden auf 2.6.9 (Docker)

☑ Dev & Prod Cluster Kubernetes upgraden?

☑ Rancher Server auf rke2 und helm umstellen

☐ Backup von Rancher Server wiederherstellen

☐ Neues Cluster mit Prod Rancher verbinden oder neu aufsetzen

☐ Dev Cluster upgraden auf 2.6.9 - kompatible K8s Version

☐ Dev Cluster auf rke2 umstellen

☐ Prod Cluster upgraden auf 2.6.9 - kompatible K8s Version

☐ Prod Cluster auf rke2 umstellen

☐ Rancher Server auf v2.7.5 upgraden

2

https://medium.com/@martin.hodges/how-to-create-a-full-featured-kubernetes-platform-for-running-micro-services-c145ab71a2eb
https://github.com/geerlingguy/internet-pi
https://betterprogramming.pub/scaling-video-encoding-with-nodejs-and-kubernetes-ffa04cbf55dc
https://missiveapp.com/blog/inbox-zero
https://ifconfig.me/ip
https://dev.to/ajeetraina/10-kubernetes-visualization-tool-that-you-cant-afford-to-miss-414k
https://picluster.ricsanfre.com/docs/ansible/
https://github.com/wikitops/ansible_kubernetes_argocd/tree/master/roles/argocd/tasks
https://www.jimangel.io/posts/automate-ubuntu-22-04-lts-bare-metal/

1.2. WORK

1.2.1. Egress Gateway

☐ CNI Calico

☐ Calico and k8s egress

☐ Kubernetes Egress on rke2 Cluster for AWX

☐ Kubernetes Egress for Videoencoding

☐ https://isovalent.com/blog/post/2022-05-static-egress-gateway/

☐ https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

1.2.2. Other

☐ Virenscanner

☐ ArgoCD

☐ Rancher PV (Netapp) wie ist es im Moment?

☐ Kubernetes Adin DEV an IDA Übergeben

1.2.3. Dokumentation

☐ RKE2 Cluster installation / Update

☐ Rancher Installation / Update

☐ Kubernetes Konfiguration / Installation

☐ App Deployment (AirGap)

1.3. Rancher Server upgraden auf 2.6.9

1.4. Rancher Server auf rke2 und helm umstellen
Install rke2

1 # curl -sfL https://get.rke2.io | sh -
2
3 # Version for Rancher 2.6.6?
4 curl -sfL https://get.rke2.io | INSTALL_RKE2_VERSION=v1.24.17+rke2r1 sh -
5
6 systemctl enable rke2-server
7 systemctl start rke2-server

Install link to kubectl

1 ln -s /var/lib/rancher/rke2/bin/kubectl /usr/local/bin/kubectl
2 ln -s /var/lib/rancher/rke2/bin/kubectl /usr/local/bin/k

3

https://docs.tigera.io/calico/latest/about/kubernetes-training/about-kubernetes-egress
https://ranchermanager.docs.rancher.com/integrations-in-rancher/istio/configuration-options/install-istio-on-rke2-cluster
https://isovalent.com/blog/post/2022-05-static-egress-gateway/
https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

3
4 mkdir /root/.kube
5 ln -s /etc/rancher/rke2/rke2.yaml /root/.kube/config

Install Helm

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Add the Helm Chart Repository for Rancher

helm repo add rancher-stable https://releases.rancher.com/server-charts/stable

Create a Namespace for Rancher

kubectl create namespace cattle-system

Install Cert-Manager

If you have installed the CRDs manually instead of with the `--set installCRDs=true`
option added to your Helm install command, you should upgrade your CRD resources
before upgrading the Helm chart:
kubectl apply -f https://github.com/cert-manager/cert-
manager/releases/download/v1.13.3/cert-manager.crds.yaml

Add the Jetstack Helm repository
helm repo add jetstack https://charts.jetstack.io

Update your local Helm chart repository cache
helm repo update

Install the cert-manager Helm chart
helm install cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace

Show pods in cert-manager namespace
kubectl get pods --namespace cert-manager

Install Rancher with helm

 1 helm install rancher rancher-stable/rancher \
 2 --namespace cattle-system \
 3 --set hostname=rancher.siwczak.de \
 4 --set bootstrapPassword=admin \
 5 --set ingress.tls.source=letsEncrypt \
 6 --set letsEncrypt.email=thomas.siwczak@gmail.com \
 7 --set letsEncrypt.ingress.class=nginx \
 8 --set ingress.tls.source=letsEncrypt \

4

 9 --set replicas=1 \
10 --version=2.7.5 \
11 --set installCRDs=true
12
13 # Verify that the Rancher Server is Successfully Deployed
14 kubectl -n cattle-system rollout status deploy/rancher
15 kubectl -n cattle-system get deploy rancher

Set ingress.tls.source

For Let’s Encrypt - set Helm-Chart-Option:

`ingress.tls.source=letsEncrypt`

5

2. WIP: Use Terraform and Ansible to setup
K8s

2.1. Setup Terraform backend in gitlab
coming soon

2.2. Create Terraform project
coming soon

2.3. Create Ansible Playbook
coming soon

2.4. Deploy are full featured k8s cluster for running
micro services

2.4.1. Install Helm

Install Helm (noch nicht optimal)

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

2.4.2. Install Argocd

Create namespace "argocd"

kubectl create ns argocd

Apply argocd install.yaml

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Download argocd-cli with curl

curl -LO https://github.com/argoproj/argo-cd/releases/download/v2.10.0/argocd-linux-
arm64

6

Install argocd-cli as "argocd"

sudo install -m 555 argocd-linux-arm64 /usr/local/bin/argocd

Patch argocd service to NodePort

kubectl patch svc argocd-server -n argocd -p '{"spec": {"type": "NodePort"}}'

Request the https nodePort port number

kubectl get svc argocd-server -n argocd -o jsonpath="{.spec.ports[1].nodePort}"

Get Initial-Admin-Password with kubectl

kubectl -n argocd get secret argocd-initial-admin-secret -o
jsonpath="{.data.password}" | base64 -d

Get Initial-Admin-Password with argocd-cli

argocd admin initial-password -n argocd

Login in argocd server with cli

argocd login <server-ip>:<nodePort>

Update Admin password with argocd-cli

argocd account update-password

Create Cluster

kubectl config get-contexts -o name
argocd cluster add <context-name>

7

3. Einstieg in DevOps

3.1. Einleitung
DevOps ist ein Begriff, der in der Softwareentwicklung immer mehr an Bedeutung gewinnt. Es
handelt sich um eine Kultur, Methodik und einen Satz von Werkzeugen, die darauf abzielen, die
Zusammenarbeit und Integration zwischen Entwicklungsteams (Dev) und Betriebsteams (Ops) zu
verbessern. In diesem Blogpost werden wir uns näher mit dem Einstieg in DevOps beschäftigen
und Schritte aufzeigen, wie Sie diese Praktiken erfolgreich implementieren können.

3.2. Was ist DevOps?
DevOps ist eine Philosophie, die auf der Idee basiert, dass Entwicklung und Betrieb nicht als
getrennte Bereiche betrachtet werden sollten. Stattdessen sollten sie eng zusammenarbeiten, um
Software effizienter bereitzustellen und kontinuierlich zu verbessern. DevOps fördert eine Kultur
der Zusammenarbeit, Automatisierung und kontinuierlichen Überprüfung, um die Bereitstellung
von Software schneller und stabiler zu machen.

3.3. Die Vorteile von DevOps
Die Einführung von DevOps bietet eine Vielzahl von Vorteilen für Organisationen. Einige der
wichtigsten sind:

1. Schnellere Bereitstellung: DevOps ermöglicht es Teams, Software schneller zu entwickeln und
bereitzustellen. Durch die Automatisierung von Prozessen und die enge Zusammenarbeit
zwischen Entwicklung und Betrieb können Softwareänderungen schnell getestet und
implementiert werden.

2. Höhere Qualität: Durch kontinuierliche Integration, automatisierte Tests und kontinuierliches
Deployment können potenzielle Fehler frühzeitig erkannt und behoben werden. Dies führt zu
einer insgesamt höheren Softwarequalität.

3. Bessere Zusammenarbeit: DevOps fördert eine Kultur der Zusammenarbeit und
Kommunikation zwischen Entwicklung und Betrieb. Durch den gemeinsamen Fokus auf die
Bereitstellung von hochwertiger Software können Konflikte minimiert und die Produktivität
gesteigert werden.

4. Skalierbarkeit: DevOps ermöglicht es Organisationen, schnell auf sich ändernde Anforderungen
und Kundenbedürfnisse zu reagieren. Durch die Automatisierung von Prozessen können Teams
effizienter arbeiten und Softwarelösungen skalieren.

3.4. Der Einstieg in DevOps
Der Einstieg in DevOps erfordert eine schrittweise Herangehensweise und eine klare Strategie. Hier
sind einige wichtige Schritte, die Sie berücksichtigen sollten:

8

3.4.1. Verständnis der DevOps-Prinzipien

Bevor Sie mit der Implementierung von DevOps beginnen, ist es wichtig, die zugrunde liegenden
Prinzipien und Best Practices zu verstehen. Dazu gehören kontinuierliche Integration,
kontinuierliches Deployment, Automatisierung, Testautomatisierung und kontinuierliches
Monitoring. Informieren Sie sich über diese Konzepte und ihre Auswirkungen auf die
Softwareentwicklung.

3.4.2. Schaffen Sie eine Kultur der Zusammenarbeit

DevOps erfordert eine enge Zusammenarbeit zwischen Entwicklungsteams, Betriebsteams und
anderen relevanten Abteilungen. Schaffen Sie eine Kultur, die auf offener Kommunikation,
Vertrauen und gemeinsamer Verantwortung basiert. Fördern Sie den Austausch von Wissen und
Ideen zwischen den Teams und schaffen Sie Möglichkeiten für regelmäßige Meetings und
Zusammenarbeit.

3.4.3. Automatisierung der Bereitstellung

Die Automatisierung spielt eine entscheidende Rolle in DevOps. Automatisieren Sie so viele
Prozesse wie möglich, um die Effizienz und Geschwindigkeit der Bereitstellung von Software zu
erhöhen. Automatisieren Sie beispielsweise den Build-Prozess, die Tests, das Deployment und das
Monitoring. Verwenden Sie Werkzeuge wie Jenkins, Ansible oder Docker, um diese Aufgaben zu
automatisieren.

3.4.4. Einsatz von Continuous Integration und Continuous Deployment

Die kontinuierliche Integration und das kontinuierliche Deployment sind Kernprinzipien von
DevOps. Implementieren Sie eine Pipeline für die kontinuierliche Integration, um sicherzustellen,
dass Codeänderungen regelmäßig und automatisch getestet werden. Verwenden Sie Tools wie Git,
Jenkins und SonarQube, um den Prozess der kontinuierlichen Integration zu unterstützen. Für das
kontinuierliche Deployment verwenden Sie Werkzeuge wie Kubernetes oder AWS Elastic Beanstalk,
um die Software nahtlos und automatisch in die Produktionsumgebung zu übertragen.

3.4.5. Überwachung und Feedback

Eine kontinuierliche Überwachung ist unerlässlich, um die Leistung und Stabilität Ihrer
Anwendungen zu gewährleisten. Implementieren Sie ein effektives Monitoring-System, das
wichtige Metriken und Alarme erfasst. Verwenden Sie Werkzeuge wie Nagios, Grafana oder ELK
Stack, um den Zustand Ihrer Anwendungen und Infrastruktur zu überwachen. Nutzen Sie das
Feedback aus der Überwachung, um Verbesserungen vorzunehmen und Engpässe zu identifizieren.

3.4.6. Kontinuierliche Verbesserung

DevOps ist ein kontinuierlicher Prozess. Stellen Sie sicher, dass Sie regelmäßige Reviews und
Retrospektiven durchführen, um den Fortschritt zu bewerten und Verbesserungspotenziale zu
identifizieren. Nutzen Sie die gewonnenen Erkenntnisse, um den DevOps-Prozess weiter zu
optimieren und effizienter zu gestalten.

9

3.5. Fazit
Der Einstieg in DevOps erfordert ein klares Verständnis der zugrunde liegenden Prinzipien und
Best Practices sowie eine schrittweise Umsetzung. Durch die Schaffung einer Kultur der
Zusammenarbeit, die Automatisierung von Prozessen und die kontinuierliche Integration und
Bereitstellung können Organisationen die Vorteile von DevOps nutzen. Mit der richtigen Strategie
und den geeigneten Tools können Sie Ihre Softwareentwicklung und Bereitstellung optimieren und
qualitativ hochwertige Software effizienter liefern.

Beginnen Sie noch heute Ihren DevOps-Weg und erleben Sie die positiven Auswirkungen auf Ihre
Organisation!

10

4. Kaniko
Einleitung, Anleitung und Beispiele

4.1. Einleitung
Kaniko ist ein Open-Source-Tool, entwickelt von Google, das zum Bauen von Docker-Images
innerhalb eines Kubernetes-Clusters oder einer anderen Umgebung ohne Docker Daemon
verwendet wird. Es ermöglicht eine sichere und effiziente Erstellung von Container-Images direkt
aus dem Quellcode.

4.2. Wie verwendet man Kaniko?
Um Kaniko zu nutzen, benötigen Sie zunächst eine Kubernetes-Umgebung. Sie können dann ein
kaniko Pod in Ihrem Cluster starten, der auf Ihren Dockerfile zeigt und ein Image in Ihrer
gewünschten Registry erstellt.

4.2.1. Schritte zur Verwendung von Kaniko

1. Installieren Sie Kaniko in Ihrem Kubernetes-Cluster:

kubectl create -f
https://github.com/GoogleContainerTools/kaniko/blob/master/deploy/Dockerfile

1. Erstellen Sie eine geheime Datei für Ihre Registry:

kubectl create secret docker-registry regcred --docker-server=<your-registry-server>
--docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-
email>

1. Verwenden Sie einen kaniko Pod, um Ihr Image zu erstellen:

apiVersion: v1
kind: Pod

11

metadata:
 name: kaniko
spec:
 containers:
 - name: kaniko
 image: gcr.io/kaniko-project/executor:latest
 args: ["--dockerfile=/Dockerfile",
 "--context=dir://<your-source-code>",
 "--destination=<your-registry>/<your-image>:<your-tag>"]
 volumeMounts:
 - name: kaniko-secret
 mountPath: /secret
 readOnly: true
 env:
 - name: GOOGLE_APPLICATION_CREDENTIALS
 value: /secret/kaniko-secret.json
 restartPolicy: Never
 volumes:
 - name: kaniko-secret
 secret:
 secretName: kaniko-secret

4.3. Beispiele
Nun, da Sie eine Vorstellung davon haben, wie man Kaniko verwendet, finden Sie hier einige
Anwendungsfälle:

1. Erstellen eines Python-Images: Wenn Sie einen Dockerfile haben, der auf ein Python-Image
zeigt und Anforderungen aus einer requirements.txt-Datei installiert, können Sie Kaniko
verwenden, um dieses Image effizient zu erstellen und es in Ihrer Registry bereitzustellen.

2. Erstellen eines Java-Images: Ähnlich wie beim Python-Beispiel können Sie einen Dockerfile
verwenden, der auf ein Java-Image zeigt und Ihre .jar-Datei in das Image kopiert. Kaniko kann
dann verwendet werden, um dieses Image zu erstellen und es in Ihrer Registry bereitzustellen.

4.4. Links / Cheatsheets
• https://link.medium.com/jkNWyPVkwub

12

https://link.medium.com/jkNWyPVkwub

5. Packer.io

5.1. Was ist Packer.io?
Packer.io ist eine kostenlose Open-Source-Tool zur Erstellung identischer Maschinenbilder für
mehrere Plattformen aus einer einzigen Quellkonfiguration. Es wird von HashiCorp entwickelt,
einem Unternehmen, das für die Entwicklung von Tools wie Vagrant, Terraform und Consul
bekannt ist. Packer.io ist in der Programmiersprache Go geschrieben und kann auf mehreren
Plattformen wie Linux, Windows und Mac OS X laufen.

5.2. Warum Packer.io verwenden?
Es gibt viele Gründe, warum Entwickler und Systemadministratoren Packer.io verwenden. Einige
davon sind:

• Konsistenz: Mit Packer.io können Sie Maschinenbilder erstellen, die auf allen Ihren Servern
gleich sind. Dies verringert das Risiko von Fehlern und Vereinfacht die Fehlersuche.

• Zeitersparnis: Mit Packer.io können Sie Maschinenbilder automatisch erstellen, ohne dass ein
manueller Eingriff erforderlich ist. Das bedeutet, dass Sie weniger Zeit mit der Konfiguration
von Servern verbringen und mehr Zeit für andere Aufgaben haben.

• Plattformunabhängigkeit: Packer.io unterstützt eine Vielzahl von Plattformen, darunter
Amazon EC2, Google Cloud, Microsoft Azure, VMware, Docker und viele mehr. Sie können also
dasselbe Tool verwenden, unabhängig davon, wo Ihre Server laufen.

5.3. Wie funktioniert Packer.io?
Packer.io verwendet Konfigurationsdateien, die in JSON geschrieben sind. In diesen Dateien
definieren Sie, welche Art von Maschinenbild Sie erstellen möchten, welche Software darauf
installiert sein soll und wie das Bild konfiguriert werden soll.

Sobald Sie Ihre Konfigurationsdatei erstellt haben, verwenden Sie das Befehlszeilen-Interface von

13

Packer.io, um das Maschinenbild zu erstellen. Packer.io führt dann eine Reihe von Schritten aus,
die als "Provisioner" und "Post-Prozessoren" bezeichnet werden, um das Maschinenbild zu erstellen
und zu konfigurieren.

5.4. Fazit
Packer.io ist ein leistungsfähiges Tool, das Ihnen hilft, konsistente und zuverlässige
Serverumgebungen zu erstellen. Mit seiner Unterstützung für eine Vielzahl von Plattformen und
seinem flexiblen Konfigurationssystem ist Packer.io ein unverzichtbares Tool für jeden, der mit
Serverinfrastruktur arbeitet.

14

6. Skopeo
Arbeiten mit Remote-Images

Skopeo ist ein Befehlszeilen-Tool, das entwickelt wurde, um mit Container-Images und Image-
Repositories zu interagieren. Es ermöglicht Benutzern, Images von Containerregistern
herunterzuladen, Informationen über Images zu erhalten, Images zwischen Registern und lokalen
Speichern zu verschieben und vieles mehr.

6.1. Hauptmerkmale von Skopeo
• Breite Plattformunterstützung: Skopeo unterstützt eine Vielzahl von Containern und Image-

Speicher, einschließlich Docker, OpenShift und mehr.

• Inspektion von Images: Skopeo kann detaillierte Informationen über ein Image ohne dessen
Herunterladen oder Ausführung liefern.

• Kopieren und Synchronisieren von Images: Skopeo kann Images zwischen verschiedenen
Registern und lokalen Speichern kopieren und synchronisieren.

6.2. Skopeo installieren und verwenden
Abhängig von deinem Betriebssystem, kann Skopeo wie folgt installiert werden:

Ubuntu und andere Linux-Distributionen: sudo apt-get install skopeo

Fedora: sudo dnf install skopeo

Nach der Installation kannst du Skopeo verwenden, um mit Container-Images zu arbeiten. Hier
sind einige grundlegende Befehle und Beispiele:

6.2.1. Images inspizieren

Um Informationen über ein Image zu erhalten, verwenden Sie den inspect Befehl. Zum Beispiel:

$ skopeo inspect docker://docker.io/fedora

6.2.2. Images kopieren

Um ein Image von einem Register zu einem anderen zu kopieren, verwenden Sie den copy Befehl.
Zum Beispiel:

$ skopeo copy docker://myregistry.com/myimage:latest
docker://myotherregistry.com/myimage:latest

Bitte beachte, dass Skopeo verschiedene Authentifizierungsoptionen für den Zugriff auf private
Register unterstützt. Weitere Informationen finden Sie in der Skopeo-Dokumentation.

15

Mit diesen grundlegenden Befehlen und Konzepten bist du in der Lage, effektiv mit Skopeo zu
arbeiten und deine Arbeit mit Container-Images zu optimieren.

16

7. Terraform

Terraform ist ein Open-Source-Tool, entwickelt von HashiCorp, das dazu dient, Infrastruktur als
Code (IaC) zu definieren und bereitzustellen. Es ermöglicht Benutzern, ihre gesamte Infrastruktur
(einschließlich Netzwerk, Storage, Server usw.) in Code zu definieren, der in einer
Versionskontrolle gespeichert werden kann. Dieser Code kann dann verwendet werden, um die
Infrastruktur auf verschiedenen Plattformen zu erstellen und zu aktualisieren.

7.1. Welche Probleme werden damit gelöst?
Terraform löst eine Reihe von Problemen im Bereich Infrastrukturmanagement:

1. Standardisierung und Wiederverwendbarkeit: Durch das Schreiben von Infrastruktur als
Code können Teams ihre Setup-Prozesse standardisieren und Codeblöcke wiederverwenden,
was zu einer effizienteren und konsistenteren Bereitstellung führt.

2. Multi-Cloud-Deployments: Terraform unterstützt eine Vielzahl von Service-Providern und
ermöglicht es Benutzern, ihre Infrastruktur über mehrere Cloud-Plattformen hinweg zu
verwalten.

3. Vereinfachte Änderungssteuerung: Mit Terraform können Änderungen an der Infrastruktur
vor der Anwendung visualisiert und überprüft werden, was das Risiko von Ausfällen reduziert.

7.2. How to use it
Terraform verwendet eine eigene Domain Specific Language (DSL) namens HashiCorp
Configuration Language (HCL), um Infrastruktur als Code zu definieren. Terraform-Prozesse
werden im Allgemeinen in vier Schritten durchgeführt:

• Schreiben Sie den Infrastrukturcode in HCL und speichern Sie ihn in .tf-Dateien.

• Führen Sie terraform init aus, um das Terraform-Projekt zu initialisieren und die benötigten
Provider-Plugins herunterzuladen.

• Führen Sie terraform plan aus, um die Änderungen zu sehen, die auf der Infrastruktur
vorgenommen werden.

• Führen Sie terraform apply aus, um die Änderungen anzuwenden.

7.3. Beispielcodes
Ein einfacher Terraform-Code zum Erstellen einer AWS EC2-Instanz könnte folgendermaßen
aussehen:

provider "aws" {

17

 region = "us-west-2"
}

resource "aws_instance" "example" {
 ami = "ami-0c94855ba95c574c8"
 instance_type = "t2.micro"

 tags = {
 Name = "example-instance"
 }
}

Nach dem Schreiben dieses Codes in einer .tf-Datei würden Sie terraform init, terraform plan und
terraform apply in Ihrer Befehlszeile ausführen, um die Instanz zu erstellen.

7.4. Terraform Komponenten

7.4.1. Terraform Core

Terraform Core ist die primäre Komponente von Terraform und verantwortlich für das Lesen und
Interpretieren der Terraform-Konfigurationen (in .tf Dateien), Erstellen und Verwalten des
Zustands der Ressourcen, und Aufrufen von entsprechenden Anbietern, um diese Ressourcen zu
erstellen und zu ändern.

7.4.2. Terraform CLI (Command Line Interface)

Terraform CLI ist das primäre Benutzerinterface für Terraform. Es bietet Befehle zum Verwalten
und Interagieren mit Terraform-Konfigurationen, Zustand und Modulen.

7.4.3. Terraform Provider

Provider sind Plugins, die von Terraform genutzt werden, um mit verschiedenen Diensten zu
interagieren. Sie definieren und bieten Ressourcen an, die in Terraform-Konfigurationen erstellt
und verwaltet werden können. Einige Beispiele für Provider sind AWS, Google Cloud, Azure, usw.

7.4.4. Terraform Modules

Module sind selbstständige Pakete von Terraform-Konfigurationen, die als Einheiten
wiederverwendet werden können. Sie können Ressourcen enthalten, Variablen definieren und
Ausgaben produzieren.

7.4.5. Terraform State

Der Terraform-Zustand ist eine wichtige Komponente, die Terraform verwendet, um den aktuellen
Zustand der in den Terraform-Konfigurationen definierten Ressourcen zu verfolgen.

18

7.4.6. Terraform Backends

Backends sind Komponenten, die zum Speichern des Terraform-Zustands und zur Durchführung
von Operationen verwendet werden. Sie ermöglichen Funktionen wie Zustandsspeicherung,
Zustandsverriegelung und Umgebungssteuerung.

7.5. Erstellung eines Terraform-Moduls
Zuerst, erstellen Sie ein neues Verzeichnis, das Ihr Modul enthalten wird. Zum Beispiel, my_module.

$ mkdir my_module

Als nächstes, erstellen Sie eine Terraform-Konfigurationsdatei innerhalb dieses Verzeichnisses.
Nennen wir sie main.tf.

variable "image_id" {
 description = "Die ID des AMI"
}

variable "availability_zone_names" {
 description = "Eine Liste der Verfügbarkeitszonen"
 type = list(string)
}

resource "aws_instance" "example" {
 ami = var.image_id
 instance_type = "t2.micro"

 availability_zone = var.availability_zone_names[0]
}

output "instance_public_ip" {
 value = aws_instance.example.public_ip
}

7.5.1. Benutzen eines Terraform-Moduls

Jetzt können wir dieses Modul in unserer Haupt-Terraform-Konfiguration verwenden. Hier ist ein
Beispiel, wie das aussehen könnte:

module "example_module" {
 source = "./my_module"

 image_id = "ami-abc123"
 availability_zone_names = ["us-west-2a", "us-west-2b"]
}

19

Jetzt können Sie terraform init und terraform apply ausführen, um das Modul in Aktion zu sehen.

7.6. Datei auf einen Server kopieren mit Terraform
Um eine Datei auf einen Server zu kopieren, kannst du den "file" oder den "template_file" Provider
von Terraform verwenden. Du musst den Inhalt der Datei bereitstellen und die Datei in deiner
Terraform-Konfiguration erstellen.

Hier ist ein Beispiel, wie du eine Datei in Terraform erstellst:

Beispiel: Datei mit dem Inhalt "Hallo, Welt!"

resource "null_resource" "example" {
 provisioner "file" {
 content = "Hallo, Welt!"
 destination = "/pfad/zu/deiner/datei.txt"

 connection {
 type = "ssh"
 user = "username"
 password = "password"
 host = self.public_ip
 }
 }
}

In diesem Beispiel wird eine Datei mit dem Inhalt "Hallo, Welt!" an den angegebenen Pfad auf dem
Server kopiert.

Arbeiten mit Passwörtern in Klartext ist ein Sicherheitsrisiko. Du solltest sichere Methoden
zum Umgang mit Passwörtern verwenden, wie z.B. das Einlesen aus sicheren Speichern oder
die Verwendung von SSH-Schlüsseln anstelle von Passwörtern.

Zusätzlich muss das Ziel-Server Terraform unterstützen und SSH-Zugriff ermöglichen. Du solltest
sicherstellen, dass der Pfad zur Datei auf dem Zielserver existiert und schreibbar ist.

Falls du eine existierende Datei kopieren möchtest, kannst du die source Eigenschaft anstelle von
content verwenden. Zum Beispiel:

Beispiel mit bereits vorhandener Datei

resource "null_resource" "example" {
 provisioner "file" {
 source = "/pfad/zu/lokal/datei.txt"
 destination = "/pfad/zu/ziel/datei.txt"

 connection {
 type = "ssh"

20

 user = "username"
 password = "password"
 host = self.public_ip
 }
 }
}

Hierbei wird eine lokale Datei auf deinem Rechner an den angegebenen Pfad auf dem Server
kopiert.

Ein weiteres Beispiel unter Verwendung von einem SSH-Key

resource "null_resource" "example" {
 provisioner "file" {
 content = "Hallo, Welt!"
 destination = "/pfad/zu/deiner/datei.txt"

 connection {
 type = "ssh"
 user = "username"
 private_key = file("~/.ssh/id_rsa")
 host = self.public_ip
 }
 }
}

Das Terraform-Verhalten kann sich abhängig von der spezifischen Serverkonfiguration und
den verwendeten Terraform-Provisionern ändern. Dieses Beispiel könnte angepasst werden
müssen, um in deiner spezifischen Umgebung zu funktionieren.

7.7. Vor- und Nachteile von Terraform
Wie jedes Tool hat auch Terraform seine Vor- und Nachteile:

Vorteile

• Provider-übergreifend: Terraform unterstützt eine Vielzahl von Providern, sowohl Cloud als
auch On-Premises.

• Immutable Infrastructure: Terraform erstellt und verwaltet Ressourcen auf eine Weise, die
Änderungen an der bestehenden Infrastruktur minimiert.

• Einfach zu lernen: HCL ist eine recht einfache und lesbare Sprache.

Nachteile

• Fehler können schwerwiegend sein: Ein Fehler in Ihrem Terraform-Code kann zu großen
Problemen in Ihrer Infrastruktur führen.

21

• Komplexität bei großen Setups: Während Terraform bei kleineren Projekten einfach zu
verwenden ist, kann es bei großen und komplexen Setups schwierig sein, den Überblick zu
behalten.

• Fehlende Unterstützung für bestimmte Ressourcen: Während Terraform viele Provider
unterstützt, gibt es immer noch Ressourcen und Dienste, die nicht unterstützt werden.

• Keine Multiuser/Platform unterstützung: Per default werden die "state" - Files lokal abgelegt.
Dadurch ist es nicht einfach so möglich, Änderungen von einem anderen Rechner oder
anderem User durchzuführen. Hierzu müssen "backends" für die Provider definiert werden.
Mögliche Backends sind Cloud-Speicher bei: Amazon, Google, Azure oder ein Cloud-Dienst von
HashiCorp (Terraform). Eine weitere Alternative ist die Nutzung von GitLab als backend - mehr
dazu im nächsten Kapitel.

7.8. Zusammenfassung
Abschließend ist Terraform ein leistungsstarkes Tool zur Verwaltung Ihrer Infrastruktur als Code.
Mit seiner Fähigkeit, eine breite Palette von Anbietern zu unterstützen und den
Infrastrukturprozess zu standardisieren, ist es ein unverzichtbares Tool in der modernen DevOps-
Werkzeugkette. Es ist jedoch wichtig, sorgfältig mit Terraform umzugehen, um mögliche Fehler zu
vermeiden, die Auswirkungen auf die Produktionsinfrastruktur haben könnten.

7.9. Links / Cheatsheet
• Introducing Terramate — An Orchestrator and Code Generator for Terraform

7.10. GitLab als Terraform Backend
coming soon

• A complete overview of GitLab managed terraform state

• How to run terraform script using GitLab CI/CD?

22

https://medium.com/mineiros/introducing-terramate-an-orchestrator-and-code-generator-for-terraform-5e538c9ee055
https://medium.com/@dksoni4530/a-complete-overview-of-gitlab-managed-terraform-state-b30114f84c27
https://medium.com/@dksoni4530/a-complete-overview-of-gitlab-managed-terraform-state-b30114f84c27
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232

8. ArgoCD

8.1. Welches Problem wird mit ArgoCD gelöst?
Anwendungsdefinitionen, Konfigurationen und Umgebungen sollten deklarativ und versioniert
sein.

Die Anwendungsbereitstellung und das Lebenszyklusmanagement sollten automatisiert,
überprüfbar und leicht verständlich sein.

8.2. Überblick

8.3. Wie arbeitet ArgoCD?
• Deklarativ - beschreibt Zielbild, nicht den Weg

• Arbeitet mit Kubernetes und OpenShift

• Kann folgende Quellen verarbeiten:

◦ kubernetes manifests

◦ Helm Charts

◦ Kustomize resources

23

8.4. Ways to interact with ArgoCD
• Web GUI

• ArgoCD CLI

• Kubernetes Manifest files

8.5. Installation von ArgoCD

kubectl create namespace argocd
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Initiales Admin Password abfragen

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath
="{.data.password}" | base64 -d; echo

8.6. Webhook
• https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/

8.7. Sync-Waves
tbd.

8.8. Bootstrap - Project
• https://github.com/argoproj/argocd-example-apps/tree/master/apps

• Automatically create multiple applications in Argo CD

8.9. High Availability
High Availability installation is recommended for production use. This bundle includes the
same components but tuned for high availability and resiliency.

• ha/install.yaml - the same as install.yaml but with multiple replicas for supported components.

• ha/namespace-install.yaml - the same as namespace-install.yaml but with multiple replicas for
supported components.

8.10. Manage multible Cluster

24

https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/
https://github.com/argoproj/argocd-example-apps/tree/master/apps
https://opensource.com/article/21/7/automating-argo-cd

8.11. Workflow Hardening
• Practical Argo Workflows Hardening

8.12. Disaster Recovery
• https://argo-cd.readthedocs.io/en/stable/operator-manual/disaster_recovery/

8.13. Bonus
• ArgoCD Custom Plugins - Creating a Custom Plugin to Process OpenShift Templates

• https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-
repo-0a406ff7c578

8.14. ArgoCD und DevOps
https://codefresh.io/blog/using-argo-cd-and-kustomize-for-configmap-rollouts

8.15. Links / Cheatsheet
• Solving ArgoCD Secret Management with the argocd-vault-plugin

• External HTTPS SSO Callback Ingress

• How to Deploy Argo CD Dashboard over Nginx Ingress-Controller

25

https://blog.argoproj.io/practical-argo-workflows-hardening-dd8429acc1ce
https://argo-cd.readthedocs.io/en/stable/operator-manual/disaster_recovery/
https://dev.to/tylerauerbeck/argocd-custom-plugins-creating-a-custom-plugin-to-process-openshift-templates-4p5m
https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-repo-0a406ff7c578
https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-repo-0a406ff7c578
https://codefresh.io/blog/using-argo-cd-and-kustomize-for-configmap-rollouts
https://itnext.io/argocd-secret-management-with-argocd-vault-plugin-539f104aff05
https://argo-cd.readthedocs.io/en/stable/operator-manual/ingress/#private-argo-cd-ui-with-multiple-ingress-objects-and-byo-certificate
https://arnavtripathy98.medium.com/solution-how-to-deploy-argo-cd-dashboard-over-nginx-ingress-controller-926d8a540844

9. GitLab Pipelines

• vordefinierter Aktionen, die bei Events starten

• Beispiel: bei Commit startet Testaktion

9.1. Gitlab Runner
• Der Gitlab-CI-Server, auch Koordinator genannt, führt selbst keine Builds aus, sonder delegiert

dies an sogenannte Runner.

• Ein Runner ist ein Prozess, der auf einem beliebigen Rechner laufen kann, und den Koordinator
pollt, um anstehende Jobs abzuholen und zu bearbeiten.

• Der Runner kann direkt installiert sein oder als Container gestartet werden.

• Gitlab Runner in Docker

9.2. Pipeline - Get started
• GitLab CI/CD Configfile .gitlab-ci.yml

stages:
 - build
 - test

build-code-job:
 stage: build
 script:
 - ruby -v
 - rake

test-code-job1:
 stage: test
 script:
 - echo "If the files are built successfully, test:"

26

https://docs.gitlab.com/runner/install/docker.html

 - rake test1

9.3. Pipeline - Stages

Die "Stages" - Liste gruppiert die Jobs und definiert die Reihenfolge der Ausführung.

stages:
 - build
 - test
 - deploy

9.4. Pipeline - Jobs
Jobs sind der fundamentale Bestandteil von Pipelines

• in Jobs wird definiert, was ausgeführt werden soll

• müssen mindestens das Element "script" enthalten

• können beliebige Namen haben

• sind in der Anzahl nicht begrenzt

• max execution time = 60min per job

9.5. Pipeline - Job example

node-lint:
 image: $NODE_BASE_IMAGE
 stage: test
 script:
 - mkdir output
 - cd app
 - npm install --silent
 - npx eslint ./ --fix -f html -o ../output/lint-report.html
 artifacts:
 paths:
 - output/lint-report.html

27

9.6. Links to follow
https://hilfe.uni-paderborn.de/GitLab_-_CI/CD

28

https://hilfe.uni-paderborn.de/GitLab_-_CI/CD

10. Gitlab pipelines in advanced
Um eine GitLab-Pipeline zu erstellen, die mit mehreren Projekten arbeitet, können Sie die
folgenden Schritte befolgen:

10.1. Projektübergreifende Pipelines definieren
Sie können in GitLab projektübergreifende Pipelines definieren, indem Sie die trigger-Anweisung
in Ihrer .gitlab-ci.yml-Datei verwenden. Diese ermöglicht es einem Projekt, eine Pipeline in einem
anderen Projekt auszulösen.

10.2. GitLab CI/CD-Konfigurationsdatei erstellen
In jedem beteiligten Projekt benötigen Sie eine .gitlab-ci.yml-Datei, die die Pipeline definiert.
Diese Datei legt die Jobs und Stufen fest, die in der Pipeline ausgeführt werden sollen.

10.3. Trigger einrichten
In der .gitlab-ci.yml des auslösenden Projekts verwenden Sie die trigger-Anweisung, um die
Pipeline eines anderen Projekts zu starten. Sie können beispielsweise angeben, welche spezifische
Pipeline eines anderen Projekts gestartet werden soll und unter welchen Bedingungen dies
geschehen soll.

10.4. Abhängigkeiten zwischen Projekten verwalten
Wenn Ihre Projekte voneinander abhängig sind, z. B. wenn ein Projekt ein Artefakt erstellt, das von
einem anderen Projekt verwendet wird, müssen Sie diese Abhängigkeiten in Ihren Pipelines
entsprechend verwalten. Dies kann durch das Übergeben von Artefakten zwischen Pipelines oder
durch die Verwendung von gemeinsamen Speicherorten wie einem Artefakt-Repository erfolgen.

10.5. Zugriffsrechte konfigurieren
Stellen Sie sicher, dass die Projekte die erforderlichen Berechtigungen haben, um Pipelines in
anderen Projekten auszulösen. Dies kann Zugriffstoken oder spezielle
Berechtigungskonfigurationen umfassen.

10.6. Pipeline-Status überwachen und debuggen
Nachdem Sie die Pipelines eingerichtet haben, sollten Sie den Fortschritt überwachen und
eventuelle Probleme debuggen. GitLab bietet eine visuelle Darstellung des Pipeline-Status, sowie
detaillierte Logs für jeden Job.

Beachten Sie, dass die genaue Konfiguration von Ihrem spezifischen Anwendungsfall und der
Struktur Ihrer Projekte abhängt. Die GitLab-Dokumentation bietet detaillierte Anleitungen und
Beispiele, die Ihnen helfen können, Ihre Pipeline-Konfiguration zu optimieren.

29

10.7. Beispiel für projektübergreifende Pipelines
Hier ist ein einfaches Beispiel, wie man eine GitLab-CI-Pipeline konfigurieren kann, die mit
mehreren Projekten arbeitet:

10.7.1. Projekt A: Hauptprojekt

Stellen Sie sich vor, Projekt A ist Ihr Hauptprojekt, das eine Pipeline in Projekt B auslöst.

gitlab-ci.yml in Projekt A

 1 stages:
 2 - build
 3 - trigger
 4
 5 build_job:
 6 stage: build
 7 script:
 8 - echo "Building Project A..."
 9
10 trigger_project_b:
11 stage: trigger
12 script:
13 - echo "Triggering pipeline in Project B..."
14 trigger:
15 project: your-group/project-b
16 branch: master

In diesem Beispiel gibt es zwei Stufen: build und trigger. Der build_job führt einen einfachen
Befehl aus (z.B. den Build-Prozess), und trigger_project_b löst eine Pipeline im Projekt B aus.

10.7.2. Projekt B: Abhängiges Projekt

Projekt B könnte ein abhängiges Projekt sein, das durch Projekt A ausgelöst wird.

gitlab-ci.yml in Projekt B

1 stages:
2 - test
3
4 test_job:
5 stage: test
6 script:
7 - echo "Testing Project B..."

In Projekt B gibt es eine einfache Pipeline mit einer Teststufe. Diese Pipeline wird ausgelöst, sobald
die trigger_project_b-Stufe in Projekt A erfolgreich abgeschlossen ist.

30

10.7.3. Hinweise

• Ersetzen Sie your-group/project-b mit dem tatsächlichen Pfad Ihres Projekts B in GitLab.

• Stellen Sie sicher, dass für das Projekt, das die Pipeline eines anderen Projekts auslöst, die
entsprechenden Zugriffsrechte eingerichtet sind. Eventuell benötigen Sie ein [CI/CD-
Token](https://docs.gitlab.com/ee/ci/triggers/#adding-a-new-trigger).

• Dieses Beispiel ist grundlegend. Je nach Anforderungen Ihres Projekts können Sie komplexere
Pipelines mit weiteren Stufen, Jobs und Bedingungen einrichten.

Diese Konfiguration ermöglicht eine einfache Interaktion zwischen zwei Projekten, wobei das eine
Projekt (Projekt A) eine Aktion in einem anderen Projekt (Projekt B) auslöst.

31

https://docs.gitlab.com/ee/ci/triggers/#adding-a-new-trigger

11. Jenkins
Ein Überblick

11.1. Einführung
Jenkins ist ein freies Open Source Automatisierungstool, das hauptsächlich mit Java entwickelt
wurde. Es dient zur kontinuierlichen Integration und kontinuierlichen Bereitstellung (CI/CD) von
Projekten.

11.2. Hauptmerkmale von Jenkins
Jenkins bietet zahlreiche Funktionen, die seine Verwendung für DevOps und CI/CD-Prozesse
attraktiv machen:

• Einfache Installation: Jenkins ist ein selbstständiges Java-Programm, das direkt aus dem Paket
auf jedem System ausgeführt werden kann, auf dem Java installiert ist.

• Plugin-Ökosystem: Es gibt Tausende von Jenkins-Plugins, die Integrationen mit fast jedem Tool
im DevOps-Lebenszyklus ermöglichen.

• Skalierbarkeit: Jenkins kann horizontal und vertikal skaliert werden, um den Anforderungen
großer und komplexer Projekte gerecht zu werden.

• Pipeline als Code: Jenkins ermöglicht es Benutzern, ihre CI/CD-Pipeline als Code zu definieren.
Dies verbessert die Wartbarkeit und Versionskontrolle der Pipeline.

11.3. Jenkins-Architektur
Jenkins folgt einer Master-Slave-Architektur, um den Arbeitslast auszugleichen:

• Master: Der Master koordiniert die Builds und verteilt die Aufgaben an die Slaves. Es speichert
auch Konfigurationsdetails und stellt die Benutzeroberfläche und die API bereit.

32

• Slaves: Die Slaves führen die Aufgaben aus, die ihnen vom Master zugewiesen wurden. Sie
können auf verschiedenen Betriebssystemen laufen und unterschiedliche
Hardwarekonfigurationen haben, je nach den Anforderungen der Builds.

11.4. Fazit
Jenkins ist ein äußerst vielseitiges und leistungsfähiges Tool für die Automatisierung von DevOps-
Aufgaben. Sein großes Plugin-Ökosystem und seine Skalierbarkeit machen es zu einer
hervorragenden Wahl für Teams jeder Größe.

11.5. Links / Cheatsheet
• Creating CI/CD Pipeline with Jenkins

33

https://medium.com/bitaksi-tech/creating-ci-cd-pipeline-with-jenkins-46ca03b4f84b

12. Tekton
Eine Einführung, Anwendung und Analyse

12.1. Einführung
Tekton ist ein leistungsstarkes und flexibles Open-Source-Framework für die Erstellung von
Continuous Integration und Continuous Delivery (CI/CD) Systemen. Entwickelt, um Kubernetes
nativ zu sein, stellt Tekton eine Reihe von Kubernetes Custom Resource Definitions (CRDs) zur
Verfügung, um Pipelines zu erstellen, die passend zu den modernen
softwareentwicklungspraktiken sind.

12.2. Welche Probleme werden damit gelöst?
Tekton löst eine Reihe von Herausforderungen im Bereich der Softwarelieferung:

• Kompatibilität: Da Tekton auf Kubernetes basiert, kann es auf jeder Plattform eingesetzt
werden, die Kubernetes unterstützt.

• Anpassbarkeit: Tekton ist hochgradig anpassbar und kann sich leicht an verschiedene CI/CD-
Workflows anpassen.

• Wiederverwendbarkeit: Tekton-Aufgaben sind modular und wiederverwendbar, was
bedeutet, dass Teams einmal erstellten Code in mehreren Pipelines verwenden können.

12.3. Wie benutzt man Tekton?
Die Verwendung von Tekton beinhaltet im Wesentlichen das Definieren und Ausführen von Tasks
und Pipelines. Hier ist ein einfacher Ablauf zur Einrichtung eines Tekton-Workflows:

1. Installieren Sie Tekton auf Ihrem Kubernetes-Cluster.

2. Definieren Sie einen Task, der eine bestimmte Aufgabe ausführt.

3. Definieren Sie eine Pipeline, die mehrere Tasks verbindet.

4. Erstellen Sie einen PipelineRun, um die Pipeline auszuführen.

34

12.4. Beispielcodes
Hier ist ein einfacher Tekton Task, der ein Docker-Image erstellt:

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: build-docker-image
spec:
 steps:
 - name: build-and-push
 image: docker:17.12.0-ce
 command: ["docker", "build", "-t", "my-image", "."]

12.5. Vor- und Nachteile
Wie jedes Tool hat auch Tekton seine Vor- und Nachteile:

12.5.1. Vorteile

• Flexibilität: Tekton bietet eine hohe Flexibilität bei der Gestaltung von CI/CD-Workflows.

• Wiederverwendbarkeit: Aufgaben in Tekton sind wiederverwendbar, was zur Effizienz der
Pipelines beiträgt.

12.5.2. Nachteile

• Komplexität: Tekton kann für Einsteiger komplex sein, besonders wenn man nicht mit
Kubernetes vertraut ist.

• Fehlende Benutzeroberfläche: Tekton selbst hat keine Benutzeroberfläche, obwohl es
Drittanbieter-Optionen gibt.

Zusammenfassend lässt sich sagen, dass Tekton ein mächtiges Werkzeug für CI/CD-Pipelines ist, das
sich durch seine Flexibilität und Wiederverwendbarkeit auszeichnet. Es hat jedoch eine steile
Lernkurve und erfordert eine gute Kenntnis von Kubernetes.

12.6. Links
• Tekton CI/CD review

35

https://itnext.io/tekton-ci-cd-review-8a639181c820

13. Kubernetes
Kubernetes, ein weitverbreitetes System zur Orchestrierung von Containeranwendungen, besteht
aus verschiedenen Komponenten, die gemeinsam eine robuste und skalierbare Plattform bilden.
Hier sind die wichtigsten Komponenten:

13.1. Master-Knoten (Master Node)
Er steuert den Kubernetes-Cluster und besteht aus mehreren Teilen:

• API-Server (kube-apiserver):
Dient als Frontend für das Kubernetes-Steuerungsebenen-Netzwerk.

• Etcd:
Eine konsistente und hochverfügbare Schlüsselwert-Datenbank, die als Kubernetes’ Backing-
Store für alle Clusterdaten genutzt wird.

• Scheduler (kube-scheduler):
Entscheidet, auf welchem Knoten neu erstellte Container platziert werden.

• Controller-Manager (kube-controller-manager):
Verwaltet die Controller, die den Zustand des Clusters überwachen und bei Bedarf Änderungen
vornehmen.

13.2. Arbeitsknoten (Worker Nodes):
Diese Knoten führen die Containeranwendungen aus. Sie enthalten:

• Kubelet: Eine Agent-Anwendung, die sicherstellt, dass die Container in einem Pod laufen.

• Kube-Proxy: Ein Netzwerk-Proxy, der die Kubernetes-Netzwerkdienste auf dem Arbeitsknoten
verwaltet.

• Container-Runtime: Die Software, die für das Ausführen von Containern verantwortlich ist
(z.B. Docker, containerd).

13.3. Pods
Die kleinste Einheit, die in Kubernetes erstellt und verwaltet wird. Ein Pod ist eine Gruppe von
einem oder mehreren Containern, die Ressourcen wie Netzwerk und Speicherplatz teilen.

13.4. Deployment und ReplicaSets
Diese Komponenten ermöglichen es Ihnen, den gewünschten Zustand Ihrer Anwendung zu
definieren und Kubernetes kümmert sich um dessen Einhaltung.

13.5. Services
Eine Abstraktion, die einen logischen Satz von Pods definiert und eine Policy, um auf sie

36

zuzugreifen.

13.6. Namespaces
Erlauben die Unterteilung von Ressourcen in verschiedenen virtuellen Clustern im selben
physischen Cluster.

13.7. ConfigMaps und Secrets
Für die Speicherung von Konfigurationsdaten und sensiblen Informationen, die von Pods genutzt
werden können.

Diese Komponenten arbeiten zusammen, um eine hochverfügbare, skalierbare und flexible
Umgebung für das Ausführen von containerisierten Anwendungen zu bieten. Kubernetes’
Architektur ermöglicht es, Anwendungen effizient und zuverlässig zu verwalten, zu skalieren und
zu verteilen.

13.8. Ingress / Egress
In Kubernetes und im Bereich der Netzwerkkommunikation beziehen sich die Begriffe "Ingress"
und "Egress" auf den Datenverkehr, der in das Netzwerk eintritt oder es verlässt. Hier sind die
Hauptunterschiede:

13.8.1. Ingress:

• Bedeutung:
Ingress bezieht sich auf den eingehenden Netzwerkverkehr. In einem Kubernetes-Kontext
bezeichnet es oft die Regeln und Mechanismen, die den Zugriff von außen auf Dienste
innerhalb des Kubernetes-Clusters steuern.

• Verwendung in Kubernetes:
In Kubernetes ist ein Ingress eine API-Ressource, die den Zugriff auf HTTP- und HTTPS-Routen
von außerhalb des Clusters zu den Services innerhalb des Clusters steuert. Es ermöglicht Ihnen,
Zugriffsregeln zu definieren, Hostnamen oder URL-Pfade auf bestimmte Services abzubilden
und sogar SSL/TLS-Zertifikate für diese Endpunkte zu handhaben.

• Beispiel:
Ein Ingress könnte konfiguriert werden, um Anfragen an meine-website.example.com an einen
spezifischen Service in Ihrem Kubernetes-Cluster weiterzuleiten.

13.8.2. Egress:

• Bedeutung:
Egress bezieht sich auf den ausgehenden Netzwerkverkehr, also den Datenverkehr, der von
Ihrem Netzwerk (z.B. einem Kubernetes-Cluster) zu einem externen Ziel fließt.

• Verwendung in Kubernetes:
In Kubernetes kontrollieren Egress-Regeln, wie der ausgehende Verkehr von den Pods in einem
Cluster zu externen Diensten geleitet wird. Dies kann wichtig sein, um die Netzwerksicherheit

37

zu gewährleisten oder um zu kontrollieren, wie Ressourcen außerhalb des Clusters genutzt
werden.

• Beispiel:
Egress-Regeln könnten festlegen, dass bestimmte Pods Zugriff auf eine externe Datenbank oder
eine API im Internet haben, während anderer Verkehr blockiert wird.

In der Praxis sind Ingress- und Egress-Kontrollen wesentliche Bestandteile des
Netzwerkmanagements und der Sicherheit in Kubernetes, da sie detailliert steuern, wie der
Datenverkehr in und aus dem Cluster fließt.

38

14. k9s
Kubernetes CLI To Manage Your Clusters

K9s is a terminal based UI to interact with your Kubernetes clusters. The aim of this project is to
make it easier to navigate, observe and manage your deployed applications in the wild. K9s
continually watches Kubernetes for changes and offers subsequent commands to interact with your
observed resources.

14.1. Installation
K9s is available on Linux, macOS and Windows platforms.

Binaries for Linux, Windows and Mac are available as tarballs in the release page.

14.2. Features

14.2.1. Information At Your Finger Tips!

• Tracks in real-time activities of resources running in your Kubernetes cluster.

14.2.2. Standard or CRD?

• Handles both Kubernetes standard resources as well as custom resource definitions.

14.2.3. Cluster Metrics

• Tracks real-time metrics associates with resources such as pods, containers and nodes.

14.2.4. Power Users Welcome!

• Provides standard cluster management commands such as logs, scaling, port-forwards,
restarts…

• Define your own command shortcuts for quick navigation via command aliases and hotkeys.

• Plugin support to extend K9s to create your very own cluster commands.

39

https://github.com/derailed/k9s/releases

• Powerful filtering mode to allow user to drill down and view workload related resources.

14.2.5. Error Zoom

• Drill down directly to what’s wrong with your cluster’s resources.

14.2.6. Skinnable and Customizable

• Define your very own look and feel via K9s skins.

• Customize/Arrange which columns to display on a per resource basis.

14.2.7. Narrow or Wide?

• Provides toggles to view minimal or full resource definitions

14.2.8. MultiResources Views

• Provides for an overview of your cluster resources via Pulses and XRay views.

14.2.9. We’ve got your RBAC!

• Supports for viewing RBAC rules such as cluster/roles and their associated bindings.

• Reverse lookup to asserts what a user/group or ServiceAccount can do on your clusters.

14.2.10. Built-in Benchmarking

• You can benchmark your HTTP services/pods directly from K9s to see how your application fare
and adjust your resources request/limit accordingly.

14.2.11. Resource Graph Traversals

• K9s provides for easy traversal of Kubernetes resources and their associated resources.

14.3. Links
• https://k9scli.io

40

https://k9scli.io

15. kURL
Open Source Kubernetes Installer

[kurl logo@2x] | https://kurl.sh/kurl_logo@2x.png

"kURL - Kubernetes Installer" ist ein Tool, das zur Vereinfachung der Installation und Bereitstellung
von Kubernetes-Clustern entwickelt wurde. Es bietet eine automatisierte Methode, um Kubernetes
auf verschiedenen Plattformen einzurichten.

Die Verwendung von kURL erfolgt in mehreren Schritten:

15.1. Vorbereitung der Infrastruktur
Stellen Sie sicher, dass die Infrastruktur für Ihren Kubernetes-Cluster bereit ist. Dies umfasst das
Einrichten von Servern oder virtuellen Maschinen, auf denen Kubernetes installiert werden soll.

15.2. Herunterladen von kURL
Laden Sie das kURL-Installationsprogramm herunter. Dieses Programm enthält die erforderlichen
Skripte und Konfigurationsdateien, um die Kubernetes-Installation durchzuführen.

Zusätzlich besteht die Möglichkeit, nicht nur die Scripte, sondern auch alle benötigten Resourcen,
in eine tar-File herunter zu laden. Damit ist dann auch eine einfache Installetion in einer Airgap-
Umgebung möglich.

15.3. Konfiguration
Passen Sie die Konfigurationsdateien an Ihre spezifischen Anforderungen an. Dies umfasst die
Festlegung von Netzwerkeinstellungen, Authentifizierungsoptionen, Speicheroptionen usw.

15.4. Installation
Führen Sie das kURL-Installationsprogramm aus und geben Sie die angepassten
Konfigurationsdateien an. Das Installationsprogramm führt dann den Prozess der Kubernetes-
Installation durch, einschließlich der Installation von Docker, der Einrichtung des Kubernetes-
Master-Knotens und der Bereitstellung der Worker-Knoten.

15.5. Überprüfung
Nach Abschluss der Installation können Sie den Status des Kubernetes-Clusters überprüfen, um
sicherzustellen, dass alles korrekt eingerichtet wurde. Dies umfasst die Überprüfung der
Verfügbarkeit der Kubernetes-API und das Testen der Kommunikation zwischen den Clusterknoten.

41

15.6. Fazit
KURL ist ein flexibles Tool, das auf verschiedene Szenarien und Plattformen zugeschnitten werden
kann. Es ermöglicht eine schnelle und effiziente Installation von Kubernetes-Clustern mit einem
standardisierten Ansatz. Nicht zuletzt bietet es eine einfache Möglichkeit für Installationen in
Airgap-Umgebungen.

15.7. Links
• https://kurl.sh

42

https://kurl.sh

16. Podman

16.1. Einleitung
Podman ist ein Tool zur Containerverwaltung, das von Red Hat entwickelt wurde und als
Alternative zu Docker dient.

16.2. Vorteile gegenüber Docker
• Daemon-los

• Verbesserte Sicherheit durch Root-losen Betrieb

• Aufgeteilte Befehle für verschiedene Aufgaben

16.3. Installation

16.3.1. macOS

• Installation über Homebrew: brew install podman

• VM-Initialisierung: podman machine init und podman machine start

16.3.2. Linux

• Ubuntu: sudo apt-get -y install podman

• Fedora: sudo dnf -y install podman

16.4. Häufig verwendete Befehle
• podman pull: Image herunterladen

• podman run: Befehl in neuem Container ausführen

• podman ps: Container auflisten

• podman exec: Prozess in laufendem Container ausführen

• podman stop: Container stoppen

16.5. Links
• https://podman.io

43

https://podman.io

17. Trivy
Vulnerability Scanner

Im stetig wachsenden digitalen Zeitalter spielen Sicherheit und Datenschutz eine immer wichtigere
Rolle. Ein kritischer Aspekt davon ist die Aufdeckung und Behebung von Sicherheitslücken in
Software, auch als Vulnerabilities bekannt. Ein Tool, das sich dabei als besonders nützlich erweist,
ist der Trivy-Scanner.

17.1. Was ist Trivy?
Trivy, entwickelt von Aqua Security, ist ein umfassender und einfach zu bedienender Vulnerability-
Scanner für Container und andere Artefakte. Es wurde mit dem Fokus auf Komfort und Effizienz
entwickelt, ohne dabei auf Präzision und Zuverlässigkeit zu verzichten.

Trivy ist leicht zu installieren und kann sowohl auf der Kommandozeile als auch in der CI/CD-
Pipeline genutzt werden. Es hat eine umfangreiche Abdeckung von Betriebssystemen und
Sprachpaketen und liefert genaue Ergebnisse, indem es sowohl Betriebssystem- als auch
Sprachspezifische Schwachstellen aufdeckt.

44

17.2. Warum Trivy?
Das Besondere an Trivy ist seine einfache Handhabung. Es erfordert keine aufwendige
Konfiguration und ist daher besonders benutzerfreundlich. Die Benutzer müssen nur den Namen
des Containers oder des Repositories angeben, und Trivy kümmert sich um den Rest.

Darüber hinaus besticht Trivy durch seine geringe False-Positive-Rate. Dies ist von entscheidender
Bedeutung, da ein übermäßig hoher False-Positive-Rate die Effektivität eines Vulnerability-
Scanners erheblich einschränken kann. Durch die Verwendung eines umfassenden
Schwachstellendatensatzes und einer genauen Matching-Logik kann Trivy eine genaue und
effiziente Analyse bieten.

17.3. Codebeispiele
Hier sind ein paar Beispiele, wie Sie den Trivy-Scanner in Ihren Code integrieren können.

17.3.1. Scannen eines Docker-Images

Das einfachste Beispiel ist das Scannen eines Docker-Images. Hier ist ein Befehl, um ein Image zu
scannen:

trivy image [Optionen] ImageName

Beispiel:

trivy image python:3.7-alpine

17.3.2. Scannen eines Dateisystems

Sie können auch ein bestimmtes Dateisystem mit Trivy scannen:

trivy fs /pfad/zum/dateisystem

45

17.3.3. Integration in eine CI/CD Pipeline

Trivy kann auch in CI/CD-Pipelines integriert werden. Hier ist ein einfaches Beispiel für die
Integration in eine GitHub Actions Pipeline:

name: CI

on:
 push:
 branches: [master]

jobs:
 trivy:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout code
 uses: actions/checkout@v2

 - name: Run Trivy vulnerability scanner
 uses: aquasecurity/trivy-action@master
 with:
 image-ref: 'python:3.7-alpine'
 format: 'template'
 template: '@/contrib/sarif.tpl'
 output: 'trivy-results.sarif'

 - name: Upload Trivy scan results to GitHub Security tab
 uses: github/codeql-action/upload-sarif@v1
 with:
 sarif_file: 'trivy-results.sarif'

17.4. Zusammenfassung
Zusammenfassend lässt sich sagen, dass Trivy eine hervorragende Wahl für Entwickler und
Sicherheitsteams ist, die einen gründlichen und zuverlässigen Vulnerability-Scanner benötigen. Mit
seiner einfachen Handhabung, genauen Ergebnissen und weitreichenden Abdeckung ist Trivy ein
unverzichtbares Tool in der modernen Softwareentwicklung.

Es ist klar, dass die Bedeutung von Vulnerability Scanning in der heutigen Welt nicht genug betont
werden kann. Und mit Tools wie Trivy wird diese Aufgabe um einiges einfacher und effektiver. Mit
kontinuierlichen Updates und Verbesserungen bleibt Trivy auch weiterhin ein Vorreiter auf dem
Gebiet der Sicherheit im Bereich Softwareentwicklung.

Indem wir die Risiken erkennen und aktiv angehen, können wir sicherstellen, dass unsere digitalen
Lösungen sicher bleiben und weiterhin Vertrauen und Zuverlässigkeit bieten. Dabei ist Trivy ein
wichtiger Verbündeter.

46

17.5. Links
• https://aquasecurity.github.io/trivy/dev/

47

https://aquasecurity.github.io/trivy/dev/

18. Asciidoctor

AsciiDoc ist eine vereinfachte Auszeichnungssprache, die dazu dient, Texte in verschiedenen
Dokumentenformaten zu veröffentlichen.

AsciiDoc hat den Vorteil, leicht erlernbar zu sein und auch unverarbeitet (als Quelltext) gut lesbar
zu sein.

18.1. Welches Problem wird damit gelöst?
• docx, pdf nicht in GIT / Versionskontrolle verwaltbar

• Erstellung von Dokument in verschiedenen Formaten ist aufwendig

• Ergebnis nicht immer korrekt reproduzierbar

• Anpassungen benötigen oft spezielle Software (Office, Visio, usw.)

18.2. Wie löst Aciidoc diese Probleme?
• Asciidoc Dokumente sind in Rohform lesbar

• Doc as code

• Presentation as code

• Keine spezielle Software notwendig

• Ausgabe in verschiedene Formate möglich

• Formatierung über Templates

18.3. Asciidoc Code - Example

 1 = Asciidoc Beispiel
 2 :Author: Thomas Siwczak
 3 :Email: thomas.siwczak@de.experis.com
 4 :Date: 11.05.2022
 5 :Revision: 1.2.3
 6 :data-uri: true
 7 :toc: // Inhaltsverzeichnis

48

 8
 9 == Erstes Kapitel
10
11 Hier könnte hier Werbung stehen. Allerdings wird das
12 nicht billig! Zeilenumbrüche im Text werden nicht übernommen.
13
14 Zweiter Absatz - wird durch eine Leerzeile getrennt.
15 Danach folgt ein Bild.
16
17 .Schönes Bild
18 image::../images/nice-pic.jpg[width=50%,align="center"]
19
20 == Zweites Kapitel
21
22 Noch mehr nützliche Informationen, die mit Geld
23 nicht zu bezahlen sind.

HTML-Version dieses Asciidoc Beispiels

18.4. Ergebnis als Html Output

18.5. Funktionsübersicht

49

example_1.html

18.6. Headlines

== Level 1 / Kapitel

Level 1 / Kapitel

=== Level 2

Level 2

==== Level 3

Level 3

===== Level 4

Level 4

18.7. Paragraphs

1 Ein erster Absatz mit nicht ganz so viel Text.
2 *Auch hier könnte ihre Werbung stehen!*
3
4 Der zweite Absatz wird durch eine Leerzeile

50

5 getrennt und dadurch automatisch ein neue Absatz erzeugt.

Ein erster Absatz mit nicht ganz so viel Text. Auch hier könnte ihre Werbung stehen!

Der zweite Absatz wird durch eine Leerzeile getrennt und dadurch automatisch ein neue Absatz
erzeugt.

18.8. Formatierung

Fett

Fett

Kursiv

Kursiv

+Monospace+

Monospace

Einen Zeilenumbruch +
erzwingen

Einen Zeilenumbruch
erzwingen

18.9. Images

1 image::images/nice-pic.jpg[]
2 // oder mit optionalen Attributen
3 image::images/nice-pic.jpg[width=50%, algin="center"]

51

18.10. Listen

1 // unordered list
2 * First
3 ** sub first
4 ** sub secound
5 *** Sub Sub
6 * Second
7 * Thirt

1 // ordered list
2 . First
3 .. sub first
4 .. sub secound
5 ... Sub Sub
6 . Second
7 . Thirt

18.11. Listen Ergebnis
Unordered list

• First

◦ sub first

◦ sub secound

▪ Sub Sub

• Second

• Thirt

Ordered list

1. First

52

a. sub first

b. sub secound

i. Sub Sub

2. Second

3. Thirt

18.12. Tabellen
A table with a title

|===
|Column 1, header row |Column 2, header row
|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

18.13. Tabellen - Best Practice

[%header,format=csv]
|===
Artist,Track,Genre
Baauer,Harlem Shake,Hip Hop
The Lumineers,Ho Hey,Folk Rock
|===

Artist Track Genre

Baauer Harlem Shake Hip Hop

The Lumineers Ho Hey Folk Rock

18.14. Sourcecode

[source, java, linenums]

class Simple{
 public static void main(String args[]){
 System.out.println("Hello Java");
 }
}

53

1 class Simple{
2 public static void main(String args[]){
3 System.out.println("Hello Java");
4 }
5 }

18.15. Inhaltsverzeichnis
Im Dokumenten-Header :toc: angeben, damit wird automatisch ein Inhaltsverzeichnis erstellt.

= Dokument mit Inhaltsverzeichnis
Thomas Siwczak <thomas.siwczak@de.experis.com>

:toc: // normal

:toc: left // In HTML Ausgabe Inhaltsverzeichnis links

:toc: macro // Damit kann das Verzeichnis frei platziert werden

// some Text

toc::[] // Platzierung des Verzeichnis

18.16. Diagram Source

54

18.17. Diagram - Output
Abbildung 1: MSD30

Failed to generate image: Could not find Java executable
/------------+--+
+-------------------------------\
| | ZD | | dzK
|
+------------/ | |
|
| /------------------------------\ /-------------\ | |
|
| | | | cDDE | | |
|
| | /--------912--------\ \----1093-----+
|<---------------------------------\ |
| | | | | ProvService | | |
| |
		v /->		
<-------------------\				
v v /---------------\				
/-----------\	cFFE		\-------------/	
	cEFF		+---1088--/	
/----+---+-----\				
			SDK 2.0	
Router	cADE			
	HPESM			<--------------------865---------------+->
cADE				
			Ansible Tower	
+--------/				
				<-----------------905----------------\
\-----------/				
KonSl				
		<--------------907-----------\		
\--------------/				
	+--------------16----------\			
\---------------/				
/--------------\				
cADE				
				\--->
KonAu | | |

55

\--------------/				
/--------------\				
cADE				
	\----------->			
KonMa				
\--------------/				
/-------------/				
/----+---+-----\				
Router	cADE			
\-------------->				
cADE				
+--------/				
MFZ				
\--------------/				
\---+
+-------------------------------/

18.18. Output Format
• html

• pdf

56

• xml / docbook

• reveal.js / Slides

• mit Pandoc weitere Formate:

◦ docx

◦ odt

◦ uvm.

18.19. Best Practice
folgt in Kürze …

• Captions

• includes

• Tabellen

• Diagrams

• Templates

• uvm.

18.20. Captions

18.21. Best Practice - Includes
Mittels includes lassen sich komplette Source Code Dateien oder Config Files extern in die
Dokumentation einbinden (z.B. yaml files) Dadurch wird bei der Aktualisierung des Sourcecode
automatisch auch immer die Dokumentation mit aktualisiert.

(adoc, Code, meta-data, uws.)

18.22. Best Practice - Diagrams
• ditaa

• plantuml

• draw.io ?

18.23. Best Practice - Tabellen mit csv

18.24. Best Practice - Templates

18.25. Pandoc

57

18.26. Dokumente generieren
Einfaches Beispiel

asciidoctor handbuch.adoc

Beispiel mit Diagram-Addon

asciidoctor handbuch.adoc -r asciidoctor-diagram

Generierung von PDF

asciidoctor-pdf handbuch.adoc
// oder
asciidoctor-pdf handbuch.adoc -r asciidoctor-diagram -o output/handbuch.pdf

18.27. Dokumente generieren mit Docker

// asciidoctor
docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor
index.adoc

// asciidoctor-pdf
docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor-pdf
index.adoc

// asciidoctor mit diagram
docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor -r
asciidoctor-diagram index.adoc


Aktuelles Verzeichnis als Volume angeben:
-v $(pwd):/documents/

18.28. Dokumente generieren mit Podman

podman run --rm -v $(pwd):/documents/ docker.io/asciidoctor/docker-asciidoctor
asciidoctor-pdf index.adoc

 Imagename = docker.io/asciidoctor/docker-asciidoctor

18.29. Links / Cheatsheet
• Asciidoctor Doku

58

https://docs.asciidoctor.org/asciidoc/latest

• Quick Reference

• Cheatsheet

• Ascciidoc Diagram online editor https://asciiflow.com/

• Convert Markdown to Asciidoc

59

https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/
https://powerman.name/doc/asciidoc-compact
https://asciiflow.com/
https://matthewsetter.com/convert-markdown-to-asciidoc-withpandoc/

19. Hugo
[hugo logo wide] | /images/logos/hugo-logo-wide.svg

19.1. Einführung
Hugo ist ein statischer Site-Generator, der in Go geschrieben wurde. Er ist bekannt für seine
Geschwindigkeit und Flexibilität. Im Gegensatz zu dynamischen Web-Content-Management-
Systemen, die Serverressourcen benötigen, generiert Hugo die gesamte Website in HTML, CSS und
JavaScript vor dem Hochladen auf den Server.

19.2. Hauptmerkmale von Hugo
Die Hauptmerkmale von Hugo beinhalten:

• Schnelligkeit: Hugo ist bekannt als der schnellste Website-Generator auf dem Markt. Er kann
Tausende von Seiten in Sekundenbruchteilen generieren.

• Go Templates: Hugo verwendet Go’s eingebaute Template-Bibliothek für die Erstellung von
Website-Templates.

• Markdown Unterstützung: Hugo unterstützt Markdown für Inhalte, was es einfach macht,
Inhalte zu erstellen und zu formatieren.

• Anpassungsfähigkeit: Hugo kann einfach angepasst werden, um eine Vielzahl von Website-
Typen zu erstellen, einschließlich Blogs, Dokumentation, Portfolio-Sites und mehr.

19.3. Hugo’s Architektur
Hugo verwendet eine einfache Verzeichnisstruktur, die es dem Benutzer ermöglicht, die Struktur
und das Design seiner Website intuitiv zu verstehen. Die Hauptkomponenten sind:

• Content-Verzeichnis: Hier speichert der Benutzer seine Inhaltsdateien. Jede Datei wird zu einer
Seite auf der Website.

• Layout-Verzeichnis: Hier werden die HTML-Templates gespeichert, die definieren, wie die
Website aussieht.

• Static-Verzeichnis: Hier werden alle statischen Ressourcen wie Bilder, CSS- und JavaScript-
Dateien gespeichert.

19.4. Fazit
Hugo ist ein leistungsfähiges Tool für die Erstellung von Websites. Seine Geschwindigkeit,
Flexibilität und einfache Anpassung machen es zu einer ausgezeichneten Wahl für Entwickler aller
Erfahrungsstufen.

60

19.5. Links
• Hugo

• Docker for Hugo

• https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-
8765485b0c39

• Usage with asciidoc

61

https://gohugo.io
https://blog.callr.tech/static-blog-hugo-docker-gitlab
https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-8765485b0c39
https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-8765485b0c39
https://gohugo.io/content-management/toc/#usage-with-asciidoc

20. Git

20.1. Was ist Git?
Git ist eine Sammlung von Dienstprogrammen in der Kommandozeile, die Änderungen in Dateien
verfolgen und aufzeichnen (meistens Quellcode, aber du kannst alle möglichen Dateien wie
Textdateien und sogar Bild-Dateien "tracken".

Durch diese Funktionalität kannst du alte Versionen deines Projekts wiederherstellen, miteinander
vergleichen, analysieren, Änderungen zusammenführen (mergen) und vieles mehr.

20.2. Die Vorteile der Versionsverwaltung mit Git
• verteiltes System zur Codeverwaltung

• Snapshots des aktuellen Zustands eines Codes

• Effiziente und intelligente Zusammenarbeit im Team

• Es erzeugt Zweige, die mehrere Arbeitsströme von verschiedenen Entwicklern, unabhängig
voneinander, festhalten. Diese Zweige können zu einer einzigen Code-Datei zusammengeführt
werden.

• Änderungen am Code sind nachvollziehbar, wer ihn geändert hat, wann er geändert wurde und
welche Versionen es vorher gab.

• Es ist betriebssystem- und sprachunabhängig. Jeder Entwickler kann von jedem System und mit
jeder Sprache an Git arbeiten.

• Git ist natürlich nicht die einzige Versionsverwaltung. Andere Versionsverwaltungssysteme sind
CVS, Bazaar und SNV.

20.3. Funktionsweise

20.4. Repo Arten
Normales Git Repo

Repository (History) und Arbeitsverzeichnis für Änderungen

62

Bare / mirror

nur Repository und kein Arbeitsverzeichnis

zur zentralen Ablage / pull & push möglich

20.5. Häufig genutzte Commands
Es folgt eine Auswahl der häufig genutzten Befehle

init, clone, config, status, log, add, commit, fetch, pull, push, stash, branch, remote

20.6. git init / git clone
Dieser Befehl (git init) initialisiert ein neues lokales Git Repository. Der Repo-Name wird direkt
nach dem Befehl hinzugefügt.

git init <myrepo>

Mit diesem Befehl (git clone) können wir den Quellcode aus einem entfernten Repository auf einen
lokalen Rechner herunterladen. Er erstellt eine Kopie dieses Repos auf dem lokalen Rechner.

git clone <URL>


Es ist auch möglich lokale Repos aus dem Dateisystem zu clonen, muss nicht
zwingend von einem Server erfolgen.

20.7. git config (email, name)
Dieser Befehl erlaubt es dir, git mitzuteilen, wer du bist. Du kannst deinen Namen und deine E-Mail
hinzufügen.

git config --global user.name “[firstname lastname]”

set a name that is identifiable for credit when review version history

git config --global user.email “[valid-email]”

set an email address that will be associated with each history marker

git config --global color.ui auto

set automatic command line coloring for Git for easy reviewing

63

20.8. git status
Dieser Befehl zeigt den Status eines Branches an. Die Verwendung dieses Befehls sagt uns, ob es
ungetrackte, staged oder unstaged Dateien gibt. Es lässt uns wissen, ob es Dateien zum Committen,
Pushen oder Pullen gibt und ob ein Branch aktuell ist.

git status

Figure 1. Beispiel - git status

20.9. git diff
diff of what is changed but not staged

git diff

diff of what is staged but not yet committed

git diff --staged

Figure 2. Beispiel - git diff

64

20.10. git log
Listet all Commits für den aktuellen Branch auf.

git log

um die Anzahl beschränken kann man einen Parameter angeben, z.B. für 3 "-3" und für einen
einzeilige Anzeige wird der Parameter "--pretty=oneline" benutzt.

git log -10 --pretty=oneline

Um einen bestimmt Datei zu verfolgen:

git log --follow [file]

20.11. git add
Hiermit wird eine Datei bereitgestellt, damit sie an das Repository übergeben werden kann. Sie
können auf drei Arten bereitstellen.

• git add * fügt alle Dateien, Ordner und Unterordner in einem Verzeichnis hinzu, mit Ausnahme
von Dateien, die mit einem Punkt wie .gitignore beginnen.

• git add <filename> fügt nur die Datei hinzu, die mit dem Dateinamen angegeben wurde.

• git add . fügt alle Dateien, Ordner und Unterordner in einem Verzeichnis hinzu, einschließlich
der Dateien, die mit einem Punkt wie .gitignore beginnen.

git add <filename>

// for example
git add hallo.txt

20.12. git commit
Dieser Befehl speichert Snapshots der Arbeitsversion eines Projekts. Er tut dies, indem er alle
Dateien in das Repository überträgt. Du kannst commit nur verwenden, nachdem du die Dateien
mit git add ins Repository gestellt hast.

Commits werden normalerweise mit einer Commit-Nachricht hinzugefügt.

git commit -m “[descriptive message]”

65

Alternativ kann auch der Parameter -m weg gelassen werden, dann öffnet sich im Anschluss der
Standart Editor, wo dann die Commit Message bearbeitet / eingegeben werden muss.


Die Commit-Message sollte einer gewissen Struktur entsprechen, mehr dazu im
Abschnitt: Commit Messages

20.13. git show (new)
Zeigt die letzt commit meaasge an oder eine bestimmte, wenn man einen commit hash angibt

git show -s

git show -s b907a23e9cdf08f04c009863140c3460bb0ff748

Figure 3. Beispiel - git show

20.14. git fetch / git pull
fetch - fetch down all the branches from that Git remote

git fetch

git pull holt und lädt Inhalte von einem entfernten Repo herunter und aktualisiert das lokale Repo
mit den heruntergeladenen Inhalten.

git pull

20.15. git push
Dieser Befehl pusht übertragene Änderungen aus einem lokalen Branch in ein anderes Repository.

git push [alias] [branch]
// for example
git push origin dev

66

20.16. git - stages

20.17. git stash (list, show, drop, pop / apply)
Stash local changes

git stash

List stashed changes

git stash list

Show stashed changes

git stash show

Remove stashed changes

git stash drop [<stash>]

Create branch from stashed changes and delete(!) stash

67

git stash branch <branchname> [stash>]

Remove single stashed state from stash list and apply it on current working tree

git stash pop [<stash>]

Apply stash to current working tree

git stash apply [<apply>]

Remove all stash entries

git stash clear

Saving temp work without stash

// hack hack hack
git switch -c my_wip
git commit -a -m "WIP"
git switch master
edit emergency fix
git commit -a -m "Fix in a hurry"
git switch my_wip
git reset --soft HEAD^
// continue hacking

Saving work with stashing

// hack hack hack
git stash
edit emergency fix
git commit -a -m "Fix in a hurry"
git stash pop
// continue hacking

20.18. branches
Show local branches

git branch

Show all branches

68

git branch -a

Create new branch

git branch <my_branch>
git checkout <my_branch>

Alternativer Shortcut

git checkout -b <my_branch>

Unterschiede zwischen Branches ermitteln / anzeiegn

git diff branchB...branchA

20.19. git remote
Origin - default remote

show details of remote settings

git remote show origin

get the remote repo-url

git remote get-url origin

set a new url for remote repo

git remote set-url origin

Weitere Remotes sind mittels

git remote add <name> <url>

definierbar.

20.20. Git stages

69

20.21. Commit Messages
Commit Messages sollten mit einer gewissen Stuktur erstellt werden: ADD:, CHG:, DEL: der Message
voranstellen, Kurzbeschreibung in einer Zeile. Ausführliche Beschreibung der Änderung (Was, in
welche[r|n] Datei[en], ggfs. Change-Nr, in weiteren Zeilen

20.22. .gitignore file

20.23. Best Practice

Does Don’t does

Name & Email setzen git push --force

gute commit messages bad code pushen

Branches nutzen in master / main pushen

max 1 Funktion in commit viele Changes in 1 Commit packen

20.24. Git-Submodule
Ein Git-Submodul ermöglicht es Ihnen, ein Git-Repository als Unterverzeichnis in einem anderen
Git-Repository zu haben. Dies ist nützlich, wenn Sie Code wiederverwenden möchten, der in einem
anderen Repository gepflegt wird. Hier ist ein einfacher Leitfaden, um ein Git-Submodul
hinzuzufügen und es zu nutzen:

20.24.1. Git-Submodul hinzufügen

Um ein Submodul hinzuzufügen, verwenden Sie den git submodule add Befehl, gefolgt von der URL
des Repositories, das Sie als Submodul hinzufügen möchten. Zum Beispiel:

1 git submodule add https://github.com/beispiel/repo.git

Dieser Befehl erzeugt ein neues Unterverzeichnis in Ihrem aktuellen Repository, klont das andere
Repository hinein und setzt es auf den aktuellen Commit fest.

20.24.2. Git-Submodul aktualisieren

Nachdem das Submodul hinzugefügt wurde, ist es auf den Commit festgesetzt, der zu der Zeit
aktuell war. Wenn Sie das Submodul auf den neuesten Stand bringen möchten, müssen Sie das
Unterverzeichnis des Submoduls wechseln und git pull ausführen.

1 cd repo
2 git pull origin main

70

20.24.3. Git-Submodul entfernen

Das Entfernen eines Submoduls erfordert ein paar Schritte mehr:

• Entfernen Sie das Submodul aus der .gitmodules Datei.

• Entfernen Sie das Submodul aus der .git/config Datei.

• Führen Sie git rm --cached path_to_submodule aus (keinen abschließenden Schrägstrich).

• Führen Sie rm -rf .git/modules/path_to_submodule aus.

• Commit und löschen Sie das nun unverfolgte Submodul-Verzeichnis.

1 git rm --cached repo
2 rm -rf .git/modules/repo
3 rm -rf repo

Bitte ersetzen Sie repo durch den Namen Ihres Submoduls.

20.25. Nützliche Commandos / Befehle
Ermittelt die höchste Version / höchsten git tag

1 // tags aus remote repos abrufen
2 git fetch --tags
3
4 // tags auflisten | sortieren | letzten anzeigen
5 git tag | sort -V | tail -n 1

20.26. Links / Cheatsheet
Git - Installation & Dokumentation

Git Book

https://education.github.com/git-cheat-sheet-education.pdf

https://www.atlassian.com/git/tutorials/why-git

Interactive git branch demo

71

http://git-scm.com
https://git-scm.com/book/en/v2
https://education.github.com/git-cheat-sheet-education.pdf
https://www.atlassian.com/git/tutorials/why-git
https://learngitbranching.js.org/?locale=de_DE

21. Semantic Versioning

21.1. Zusammenfassung
Auf Grundlage einer Versionsnummer von MAJOR.MINOR.PATCH werden die einzelnen Elemente
folgendermaßen erhöht:

1. MAJOR wird erhöht, wenn API-inkompatible Änderungen veröffentlicht werden,

2. MINOR wird erhöht, wenn neue Funktionalitäten, die kompatibel zur bisherigen API sind,
veröffentlicht werden, und

3. PATCH wird erhöht, wenn die Änderungen ausschließlich API-kompatible Bugfixes umfassen.

Außerdem sind Bezeichner für Vorveröffentlichungen und Build-Metadaten als Erweiterungen zum
MAJOR.MINOR.PATCH-Format verfügbar.

21.2. Links / weitere Infos
• Semantic Versioning 2.0.0

• Conventional Commits

• Commitizen Tool

72

https://semver.org/lang/de/spec/v2.0.0.html
https://www.conventionalcommits.org/en/v1.0.0/
https://commitizen-tools.github.io/commitizen/

22. RKE2 - Rancher
RKE2 steht für "Rancher Kubernetes Engine 2", und es handelt sich dabei um eine Kubernetes-
Distribution, die von Rancher Labs entwickelt wurde. Kubernetes ist ein Open-Source-Container-
Orchestrierungs-Framework, das dazu dient, Container-Anwendungen in skalierbaren,
hochverfügbaren Clustern zu verwalten. RKE2 ist eine spezielle Implementierung von Kubernetes,
die einige besondere Merkmale und Vorteile bietet:

1. Einfache Bereitstellung: RKE2 wurde entwickelt, um die Bereitstellung von Kubernetes-
Clustern zu vereinfachen. Es bietet ein benutzerfreundliches Installations- und
Konfigurationsverfahren, das auch für Einsteiger zugänglich ist.

2. Sicherheit: RKE2 setzt auf Sicherheit und konzentriert sich auf die Minimierung von
Angriffsflächen. Es verwendet standardmäßig den Containerd-Container-Manager anstelle von
Docker und bietet Funktionen wie SELinux und AppArmor zur weiteren Verbesserung der
Sicherheit.

3. High Availability: RKE2 unterstützt die Einrichtung von hochverfügbaren Kubernetes-Clustern.
Dies bedeutet, dass Ihr Cluster weiterhin funktionieren kann, selbst wenn einzelne
Komponenten oder Knoten ausfallen.

4. Automatisierung: RKE2 enthält Funktionen zur Automatisierung von Aufgaben wie Updates
und Upgrades, was die Wartung und Verwaltung Ihres Kubernetes-Clusters erleichtert.

5. Kubernetes-Kompatibilität: RKE2 bleibt eng mit der Kubernetes-Community und dem
Kubernetes-Ökosystem verbunden und ist daher mit vielen Kubernetes-Tools und -Ressourcen
kompatibel.

6. Modularität: RKE2 verwendet eine modulare Architektur, die es Ihnen ermöglicht,
Komponenten und Erweiterungen nach Bedarf hinzuzufügen oder zu entfernen.

7. Unterstützung für verschiedene Plattformen: RKE2 kann auf verschiedenen
Betriebssystemen und Infrastrukturplattformen, einschließlich Bare-Metal-Servern, virtuellen
Maschinen und Cloud-Diensten, ausgeführt werden.

Die Vorteile von RKE2 machen es zu einer attraktiven Option für Unternehmen und Entwickler, die
Kubernetes in ihren Anwendungen und Diensten verwenden möchten, da es die Einrichtung,
Verwaltung und Sicherheit von Kubernetes-Clustern erleichtert. Beachten Sie jedoch, dass sich die
Technologie und Features von RKE2 im Laufe der Zeit weiterentwickeln können, sodass es ratsam
ist, die neuesten Informationen und Dokumentationen zu überprüfen, um die aktuellen
Funktionen und Best Practices zu verstehen.

22.1. Install

22.1.1. ARM64

 1 mkdir /root/rke2-artifacts && cd /root/rke2-artifacts
 2 wget http://bit.ly/3GQOxhd rke2-images.linux-arm64.tar.gz
 3 wget https://github.com/rancher/rke2/releases/download/v1.27.3+rke2r1/rke2.linux-
 arm64.tar.gz

73

 4 wget https://github.com/rancher/rke2/releases/download/v1.27.3+rke2r1/sha256sum-
 arm64.txt
 5 curl -sfL https://get.rke2.io --output install.sh
 6
 7 INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh
 install.sh
 8
 9 systemctl enable rke2-server
10 systemctl start rke2-server

Kubectl

1 curl -LO https://dl.k8s.io/release/v1.28.4/bin/linux/arm64/kubectl
2 install kubectl /usr/local/bin
3 rm kubectl -f

k9s

1 curl -LO
 https://github.com/derailed/k9s/releases/download/v0.29.1/k9s_Linux_arm64.tar.gz
2
3 tar xvzf k9s_Linux_arm64.tar.gz k9s ①
4
5 install k9s /usr/local/bin
6
7 rm -f k9s k9s_Linux_arm64.tar.gz ②

① Unpack only k9s binary from archive

② Cleanup

22.2. Create Aliase

1 alias kcn='kubectl config set-context --current --namespace'
2 alias k='kubectl'
3 alias kpo='kubectl get po -A'
4 alias kepo='kubectl get po -A | grep -Ev "Running|Completed"'

22.3. Links
• Offizelle Doku

74

https://docs.rke2.io/

23. HAProxy
Vor- und Nachteile, Installation & Konfiguration

HAProxy ist ein beliebter Load Balancer und Proxy-Server, der sich besonders durch seine Leistung
und Zuverlässigkeit auszeichnet. Im Vergleich zu anderen Load Balancern bietet HAProxy sowohl
Vorteile als auch Nachteile. Hier ist ein Überblick:

23.1. Vorteile von HAProxy
1. Hohe Leistung und Zuverlässigkeit: HAProxy ist bekannt für seine hohe Durchsatzkapazität

und geringe Latenz, was es ideal für hochverfügbare Umgebungen macht.

2. Flexibilität in der Konfiguration: HAProxy bietet eine sehr detaillierte und flexible
Konfiguration, die es ermöglicht, Verkehr sehr präzise zu steuern und zu manipulieren.

3. Unterstützung für HTTP und TCP: Es kann sowohl als HTTP-Load-Balancer als auch als
TCP/UDP-Load-Balancer verwendet werden, was es vielseitig einsetzbar macht.

4. Gesundheitsprüfungen und Failover: HAProxy bietet fortschrittliche Gesundheitsprüfungen
und Failover-Mechanismen, um die Verfügbarkeit der Dienste zu gewährleisten.

5. Open Source und Gemeinschaftsunterstützung: Als Open-Source-Tool hat es eine starke
Community, die ständig zur Weiterentwicklung des Tools beiträgt.

6. SSL/TLS-Unterstützung: Es unterstützt SSL/TLS-Terminierung, was die Sicherheit verbessert.

23.2. Nachteile von HAProxy
1. Komplexität in der Konfiguration: Die detaillierte Konfiguration kann für neue Benutzer

überwältigend sein und erfordert ein gewisses Maß an technischem Verständnis.

2. Fehlende GUI: Im Gegensatz zu einigen anderen Lösungen bietet HAProxy keine grafische
Benutzeroberfläche, was die Konfiguration und das Management erschwert.

3. Eingeschränkter Support für Websockets: Obwohl HAProxy Websockets unterstützt, kann es
im Vergleich zu spezialisierten Lösungen Limitierungen geben.

4. Keine native Cloud-Integration: Im Gegensatz zu Cloud-nativen Lösungen wie AWS Elastic
Load Balancing oder Azure Load Balancer bietet HAProxy keine direkte Integration mit Cloud-
Diensten.

23.3. Vergleich mit Anderen Load Balancern
• Nginx: Nginx ist ebenfalls ein sehr beliebter Load Balancer und Webserver. Im Vergleich zu

HAProxy bietet Nginx eine einfachere Konfiguration und eine bessere Integration in
Webserver-Funktionalitäten, ist aber in einigen High-Performance-Szenarien möglicherweise
nicht so leistungsfähig wie HAProxy.

• AWS Elastic Load Balancing (ELB): ELB ist eine Cloud-native Lösung, die eine nahtlose
Integration in AWS-Dienste bietet. Während ELB eine einfache Konfiguration und automatische
Skalierung bietet, fehlt ihm die Flexibilität und detaillierte Konfigurierbarkeit von HAProxy.

75

• F5 Big-IP: Big-IP ist eine kommerzielle Lösung, die neben Load Balancing auch Funktionen für
Anwendungssicherheit und Performance-Management bietet. Im Vergleich zu HAProxy bietet
Big-IP mehr Enterprise-Funktionen, ist aber auch kostenintensiver.

Jeder Load Balancer hat seine Stärken und Schwächen, und die Wahl hängt von den spezifischen
Anforderungen Ihrer Infrastruktur, Ihrem Budget und Ihren technischen Fähigkeiten ab. HAProxy
ist eine ausgezeichnete Wahl für Szenarien, in denen hohe Leistung, Zuverlässigkeit und
detaillierte Verkehrskontrolle erforderlich sind.

23.4. Installation
1. Systemaktualisierung:

◦ Debian-basierte Systeme:
sudo apt-get update

2. HAProxy installieren:

◦ Debian-basierte Systeme:
sudo apt-get install haproxy

◦ Für andere Linux-Distributionen wie CentOS den entsprechenden Paketmanager
verwenden.

23.5. Grundlegende Konfiguration
1. Konfigurationsdatei bearbeiten:

◦ Die Standardkonfigurationsdatei befindet sich unter /etc/haproxy/haproxy.cfg.

◦ Öffnen Sie die Datei mit einem Texteditor, z.B. sudo nano /etc/haproxy/haproxy.cfg.

2. Einfachen Load-Balancer konfigurieren:

◦ Fügen Sie Abschnitte für defaults, frontend, und backend hinzu.

◦ Im frontend-Abschnitt definieren Sie den Port und leiten den Verkehr an backend weiter.

◦ Im backend-Abschnitt definieren Sie die Server für den Lastausgleich.

23.6. Beispielkonfiguration

defaults
 mode http
 timeout connect 5000ms
 timeout client 50000ms
 timeout server 50000ms

frontend http_front
 bind *:80
 default_backend http_back

backend http_back

76

 balance roundrobin
 server server1 192.168.0.1:80 check
 server server2 192.168.0.2:80 check

23.7. Nach der Konfiguration
1. Konfiguration überprüfen:

◦ sudo haproxy -c -V -f /etc/haproxy/haproxy.cfg

2. HAProxy neu starten:

◦ sudo systemctl restart haproxy

3. Status überprüfen:

◦ sudo systemctl status haproxy

23.8. Zusätzliche Schritte
• Sicherheitsaspekte: Konfigurieren Sie Ihre Firewall entsprechend.

• Erweiterte Konfiguration: Für fortgeschrittene Einstellungen konsultieren Sie die HAProxy-
Dokumentation.

Wichtig: Diese Anleitung ist grundlegend. Für spezifische Anforderungen und Architekturen sollten
Sie sich weitergehend informieren und die offizielle Dokumentation konsultieren.

77

24. Consul
Consul ist ein Dienstnetzwerk-Tool, das von HashiCorp entwickelt wurde, dem Unternehmen hinter
Vagrant und Packer. Es bietet eine vollständige Plattform für die Entdeckung von Diensten, die
Konfigurationsverwaltung und die Segmentierung in verteilten Anwendungen und Diensten.

24.1. Kernfunktionen von Consul
Consul bietet viele Funktionen, die dazu beitragen, die Herausforderungen des Betriebs von
verteilten Systemen zu bewältigen. Dazu gehören:

• Dienstentdeckung: Anwendungen können Consul verwenden, um andere Dienste im Netzwerk
mit einem DNS- oder HTTP-Interface zu entdecken.

• Gesundheitsüberprüfungen: Consul kann die Verfügbarkeit von Diensten überwachen und
Anwendungen die Anforderungen an gesunde oder ungesunde Instanzen weiterleiten.

• Key/Value-Speicher: Ein flexibler Key/Value-Speicher ermöglicht die dynamische
Konfiguration, das Feature-Flagging, die Koordination, die Führungswahl und vieles mehr.

• Sichere Dienstekommunikation: Automatische TLS-Verschlüsselung und Identitätsbasierte
Autorisierung für Dienste.

24.2. Wie man Consul einsetzt
Consul ist sehr flexibel und kann in einer Vielzahl von Umgebungen und Anwendungsfällen
eingesetzt werden. Hier sind einige gängige Einsatzmöglichkeiten:

• Mikroservicenetze: Consul kann als zentrales Dienstverzeichnis für ein Netzwerk von
Mikroservices verwendet werden, um die Dienstentdeckung und -segmentierung zu
vereinfachen.

• Multicloud- und Plattformübergreifende Bereitstellungen: Mit Consul können Sie Dienste
über verschiedene Cloud-Plattformen und -Bereitstellungsumgebungen hinweg koordinieren.

• Konfigurationsverwaltung: Sie können Consul verwenden, um Konfigurationsdaten für Ihre
Anwendungen zu speichern und abzurufen.

Um Consul zu installieren und zu verwenden, laden Sie es von der offiziellen HashiCorp-Website
herunter und folgen Sie den Anleitungen in der Dokumentation. Ein typisches Consul-Setup könnte
mehrere Consul-Server enthalten, die in verschiedenen Teilen Ihres Netzwerks laufen, um Dienste
zu entdecken und zu überwachen.

78

25. Tmux
Terminal-Multiplexer-Tool

Tmux, kurz für 'Terminal Multiplexer', ist ein wertvolles Werkzeug für jeden, der viel Zeit in der
Befehlszeile verbringt. Es ermöglicht den Benutzern, mehrere Terminal-Sitzungen in einem
einzigen Fenster zu verwalten, und bietet eine Reihe von Funktionen, die die Produktivität erhöhen
und den Workflow optimieren.

25.1. Hauptmerkmale von Tmux
• Sitzungsmanagement: Tmux ermöglicht es Benutzern, Sitzungen zu erstellen, zu trennen,

anzuhängen und zwischen ihnen zu wechseln, was es ideal für das gleichzeitige Arbeiten an
mehreren Aufgaben oder Projekten macht.

• Fenster und Bereiche: Innerhalb einer Tmux-Sitzung können Benutzer mehrere Fenster öffnen
und jedes Fenster in mehrere Bereiche unterteilen. Dies erleichtert die Navigation und das
Multitasking.

• Anpassbarkeit: Tmux ist hochgradig anpassbar und erlaubt den Benutzern,
Schlüsselbindungen zu ändern und das Aussehen des Interfaces anzupassen.

Mit Tmux kannst du deinen Befehlszeilen-Workflow erheblich verbessern, ob du nun ein
Entwickler bist, der mehrere Codebasen verwaltet, oder ein Systemadministrator, der verschiedene
Server überwacht.

25.2. Installation
Abhängig von deinem Betriebssystem, kann Tmux wie folgt installiert werden:

Ubuntu und andere Linux-Distributionen: sudo apt-get install tmux

Mac OS X: brew install tmux

Windows: Unter Windows empfehle ich die Verwendung von WSL (Windows Subsystem for Linux)
und dann den gleichen Befehl wie bei Ubuntu.

25.3. Erste Schritte
Nach der Installation kannst du eine neue Tmux-Sitzung starten, indem du tmux in die
Kommandozeile eingibst. Du solltest nun eine neue Tmux-Sitzung sehen mit einer Statusleiste am
unteren Rand.

25.4. Sitzungen, Fenster und Bereiche
In Tmux gibt es Konzepte wie Sitzungen, Fenster und Bereiche.

Sitzung: Eine Sitzung ist eine unabhängige Arbeitsumgebung mit einer eigenen Gruppe von

79

Fenstern.

Fenster: Ein Fenster nimmt den gesamten Bildschirm ein und kann mehrere Bereiche enthalten.

Bereiche: Ein Fenster kann in mehrere Bereiche unterteilt werden.

25.5. Grundlegende Befehle
Um Befehle an Tmux zu senden, verwendest du den Tmux-Befehlspräfix, der standardmäßig Ctrl-b
ist, gefolgt von einem anderen Schlüssel. Hier sind einige grundlegende Befehle:

Ctrl-b "

Teilt das aktuelle Fenster horizontal.

Ctrl-b %

Teilt das aktuelle Fenster vertikal.

Ctrl-b o

Wechselt den Fokus zwischen Bereichen.

Ctrl-b c

Erstellt ein neues Fenster.

Ctrl-b n

Wechselt zum nächsten Fenster.

Ctrl-b l

Wechselt zum letzten Fenster.

Ctrl-b d

Trennt die aktuelle Sitzung (diese läuft weiter im Hintergrund).

25.6. Sitzungsmanagement
Tmux ermöglicht es dir, Sitzungen zu verwalten, die im Hintergrund laufen können. Hier sind
einige Befehle dazu:

tmux new -s mysession

Erstellt eine neue Sitzung namens "mysession".

tmux attach -t mysession

Hängt sich an eine vorhandene Sitzung namens "mysession" an.

tmux switch -t mysession

Wechselt zu einer vorhandenen Sitzung namens "mysession".

tmux list-sessions

Listet alle aktiven Sitzungen auf.

80

Bitte beachte, dass die Tastenkombinationen und Befehle konfigurierbar sind und durch die tmux-
Konfigurationsdatei (normalerweise ~/.tmux.conf) geändert werden können.

Mit diesen grundlegenden Befehlen und Konzepten bist du in der Lage, effektiv mit Tmux zu
arbeiten und kannst deinen Workflow verbessern. Es gibt natürlich noch viele weitere Befehle und
Möglichkeiten zur Anpassung, die du erkunden kannst, wenn du mit Tmux vertrauter bist.

25.7. Links / Cheatsheet
• https://gist.github.com/MohamedAlaa/2961058

81

https://gist.github.com/MohamedAlaa/2961058

26. Vagrant
Vagrant ist ein Open-Source-Tool, das von HashiCorp entwickelt wurde, um die Erstellung und
Verwaltung von virtuellen Maschinen-Umgebungen zu vereinfachen. Vagrant ist
plattformunabhängig und unterstützt eine Vielzahl von Betriebssystemen wie Linux, Windows und
Mac. Darüber hinaus unterstützt es auch eine Vielzahl von Virtualisierungsplattformen, auch
Provider genannt, wie VirtualBox, VMware, Hyper-V und mehr.

26.1. Vorteile von Vagrant
• Einfache Verwendung: Vagrant bietet eine einfache Befehlszeilenschnittstelle zur Verwaltung

von virtuellen Maschinen. Mit einem einzigen Befehl können Sie eine VM starten, stoppen,
löschen oder neu starten.

• Reproduzierbarkeit: Mit Vagrant können Sie eine "Vagrantfile" -Konfigurationsdatei erstellen,
die die Anforderungen Ihrer VM definiert. Dies stellt sicher, dass jeder, der das Vagrantfile hat,
genau die gleiche VM-Umgebung erstellen kann.

• Integration: Vagrant integriert sich nahtlos mit bestehenden Konfigurationsverwaltungstools
wie Chef, Puppet, Ansible und anderen, um die Konfiguration und Verwaltung von VMs zu
vereinfachen.

26.2. Wie man Vagrant einsetzt
Um Vagrant zu verwenden, folgen Sie den folgenden grundlegenden Schritten:

1. Installieren Sie Vagrant: Laden Sie Vagrant von der offiziellen Website herunter und
installieren Sie es auf Ihrem System.

2. Erstellen Sie eine Vagrantfile: Eine Vagrantfile ist eine Konfigurationsdatei, die Vagrant sagt,
welche Art von Maschine und Ressourcen Sie benötigen, und wie diese konfiguriert werden
sollen.

3. Starten Sie die VM: Verwenden Sie das 'vagrant up'-Kommando, um die VM zu starten. Vagrant
wird die VM entsprechend Ihrer Vagrantfile erstellen und konfigurieren.

4. Verbinden Sie sich mit der VM: Verwenden Sie das 'vagrant ssh'-Kommando, um sich mit Ihrer
VM zu verbinden und darauf zu arbeiten.

5. Beenden und Löschen Sie die VM: Wenn Sie mit Ihrer VM fertig sind, können Sie das 'vagrant
halt'-Kommando verwenden, um sie zu stoppen, und das 'vagrant destroy'-Kommando, um sie
zu löschen.

Vagrant bietet eine effiziente und flexible Möglichkeit, mit virtuellen Maschinen zu arbeiten. Ob Sie
eine isolierte Entwicklungsumgebung benötigen oder eine komplexe VM-Infrastruktur verwalten,
Vagrant kann Ihnen dabei helfen.

82

27. Gegenüberstellung: Ansible, Chef, Puppet
und SaltStack
Die Gegenüberstellung von Ansible, Chef, Puppet und SaltStack offenbart unterschiedliche
Merkmale und Vorteile, die auf verschiedene organisatorische Bedürfnisse im Bereich der
Konfigurationsverwaltung zugeschnitten sind:

27.1. Ansible:
• Typ: Überwiegend agentenlos (unterstützt auch agentenbasiert).

• Hauptmerkmale: Automatisiert Cloud-Ökosysteme, Anwendungen, Netzwerke, Container,
Sicherheit.

• Kompatibilität: Funktioniert mit vielen Linux-Versionen, macOS, FreeBSD, Solaris; basiert auf
Python.

• Ansatz: Verwendet eine Kombination aus prozeduraler und deklarativer Sprache; zielt auf
gewünschte Zustände ab.

• Vorteil: Vereinfacht IT-Bereitstellungen mit menschenlesbaren Datenbeschreibungen und
Modulen für Automatisierung.

27.2. Chef Infrastructure Management:
• Typ: Agentenbasiert.

• Hauptmerkmale: Automatisiert über Cloud, physische und virtuelle Ökosysteme; unterstützt
AIOps.

• Kompatibilität: Unterstützt verschiedene Unix-, Linux- und Windows-Versionen.

• Ansatz: Verwendet Ruby; betont Skalierbarkeit und präventive Tests für Änderungen.

• Vorteil: Gut für Umgebungen, in denen Sicherheit entscheidend ist; ermöglicht autonome
Knoten.

27.3. Puppet Enterprise:
• Typ: Agentenlos.

• Hauptmerkmale: Betont Service-Stabilität und -Zuverlässigkeit; verringert
Änderungsfehlerraten.

• Kompatibilität: Breite Unterstützung für moderne Betriebssysteme.

• Ansatz: Verwendet Infrastruktur als Code mit Zustandsdurchsetzung.

• Vorteil: Vereinfacht das Management und ermöglicht eine effizientere Handhabung von mehr
Ressourcen.

83

27.4. SaltStack:
• Typ: Bietet sowohl agentenbasierte (Minions oder Proxy-Agenten) als auch agentenlose

(SSH/WinRM) Möglichkeiten.

• Hauptmerkmale: Ereignisgesteuerte Automatisierung; bewältigt komplexe Szenarien wie
mehrstufige Patch-Vorgänge.

• Kompatibilität: Unterstützt Windows, verschiedene Linux-Distributionen und Unix.

• Ansatz: Python-basiert mit YAML-Unterstützung; kombiniert imperativen und deklarativen
Ausführungsansatz.

• Vorteil: Passt sich gut an skalierende Umgebungen mit komplexen Anforderungen an.

27.5. Fazit
Das richtige Werkzeug auswählen: Die Entscheidung dreht sich nicht darum, das beste Werkzeug
auf dem Markt zu finden, sondern das passendste für die spezifischen Bedürfnisse einer
Organisation. Zu berücksichtigende Faktoren sind: - Agent vs. Agentenlos: Ansible und Puppet sind
agentenlos; Chef verwendet Agenten, und SaltStack bietet beides. - OS-Kompatibilität: Dies kann
ein entscheidender Faktor sein, abhängig von der Infrastruktur der Organisation. -
Teamkompetenz: Die Vertrautheit mit den zugrunde liegenden Programmiersprachen (z. B. Python
für Ansible, Ruby für Chef) ist wichtig. - Spezifische organisatorische Anforderungen: Jedes
Werkzeug hat einzigartige Stärken, die für verschiedene Umgebungen und Bedürfnisse geeignet
sind.

Letztendlich werden die Stärken und Kompetenzen des IT-Teams maßgeblich beeinflussen, welches
Konfigurationsverwaltungsprodukt am geeignetsten ist.

84

28. WIP: GitOps / DevOps / SRE: Konzepte &
Tools
Prozessverbesserungsansatz der Softwareentwicklung und Systemadministration

Das Kernstück der DevOps-Organisationskultur ist die Aufhebung der Trennung zwischen
Entwicklung und Operations zugunsten einer Kooperation.

28.1. GitOps
• Alles wird in Git Repositories gespeichert

• Alle Änderungen werden ausschließlich aus Git gelesen

• incl. Infrastruktur (Infrastruktur as Code)

• Voraussetzung für erfolgreiche Automatisierung

28.2. DevOps
• Begriff setzt sich aus "Dev" (Development) und "Ops" (Operations) zusammen

• zuvor getrennte Rollen wie Entwicklung, IT-Betrieb, Security arbeiten damit koordiniert
zusammen

• Bessere und zuverlässigere Produkte entstehen

• Schnellere Reaktion auf Anforderungen vom Kunden

Die Vorteile: Produktiver entwickeln, weniger Abhängigkeiten, Qualitätssteigerung

28.3. AppOps
• DevOps Is Dead, Long Live AppOps

28.4. SRE
ToDo

• https://medium.com/@interviewhelp/google-site-reliability-engineer-salary-e742a8b953c9

• SRE CHEAT SHEET

28.5. Links
ToDo

85

https://betterprogramming.pub/devops-appops-f096cdbb02ac
https://medium.com/@interviewhelp/google-site-reliability-engineer-salary-e742a8b953c9
https://kubernetes7.medium.com/sre-cheat-sheet-10e62c3a4c63

29. WIP: DevOps - Konzepte
• Source Code Management

• Package Management

• CI/CD

• Container Orchestration

• Cloud

• Infrastructure as Code

• Continuous Monitoring

29.1. 1. Source Code Management (SCM)
Tools: Git, Gitea, GitLab, GitHub

29.2. 2. Package Management
Tools: DockerHub, Jfrog, Nexus, GitLab

29.3. 3. CI/CD Concept

Tools: Jenkins, Gitlab CI/CD

29.4. 4. Container Orchestration
Tools: Kubernetes, OpenShift

86

29.5. 5. Cloud
Tools: AWS, Google Cloud, Oracle Cloud, Microsoft Azure

29.6. 6. Infrastructure as Code Concept (IaC)
Tools: Terraform, Ansible

29.7. 7. Continuous Monitoring
Tools: Nagios, Prometheus

87

30. WIP: Fähigkeiten für einen DevOps-
Ingenieur
Ein DevOps-Ingenieur muss eine Reihe von technischen und weichen Fähigkeiten besitzen. Hier
sind einige der wichtigsten:

30.1. 1. Kenntnisse von CI/CD-Tools
Continuous Integration / Continuous Delivery - Tools wie Jenkins, Bamboo oder GitLab CI sind
wesentlich für den Automatisierungsprozess in DevOps.

30.2. 2. Kenntnisse in Cloud-Diensten
Vertrautheit mit Plattformen wie AWS, Google Cloud oder Microsoft Azure ist von Vorteil, da viele
Unternehmen ihre Infrastrukturen in der Cloud haben.

30.3. 3. Infrastruktur als Code (IaC)
Erfahrung mit Tools wie Ansible, Terraform oder Chef, die zur Automatisierung von
Infrastrukturaufgaben verwendet werden.

30.4. 4. Containerisierung und Orchestrierung
Kenntnisse in Docker und Kubernetes sind oft erforderlich, um den Prozess der
Softwarebereitstellung und -verwaltung zu optimieren.

30.5. 5. Programmier- und
Skripterstellungsfähigkeiten
Grundkenntnisse in Programmiersprachen wie Python, Ruby oder Java und Skripting-Sprachen wie
Bash oder PowerShell sind oft hilfreich.

30.6. 6. Systemadministration
Verständnis für Netzwerkprotokolle, Betriebssysteme und Sicherheit.

30.7. 7. Weiche Fähigkeiten
Starke Kommunikationsfähigkeiten, Problemlösungsfähigkeiten und die Fähigkeit, in einem Team
zu arbeiten, sind ebenfalls wichtig in der Rolle eines DevOps-Ingenieurs.

88

31. Semantische Versionsbezeichnungen
Um semantische Versionsbezeichnung in einer GitLab-Pipeline zu realisieren, können Sie die
folgenden Schritte befolgen:

1. Generieren Sie eine neue Versionsnummer basierend auf den Anforderungen der semantischen
Versionsbezeichnung. Hierzu können Sie ein Skript verwenden, das in Ihrem Projekt nach
spezifischen Commit-Messages sucht, um zu bestimmen, ob es sich um eine Major-, Minor- oder
Patch-Änderung handelt.

2. In Ihrem .gitlab-ci.yml-Datei, definieren Sie einen Job, der das Skript ausführt und die neue
Versionsnummer generiert. Speichern Sie diese Nummer als CI/CD-Variable für die
nachfolgenden Jobs.

3. Verwenden Sie diese Versionsnummer in Ihren nachfolgenden Jobs - z.B. beim Bauen, Testen
und Bereitstellen Ihrer Anwendung.

4. Schließlich, in einem separaten Job, erstellen Sie ein neues Git-Tag mit dieser Versionsnummer
und pushen es zurück in Ihr Repository.

31.1. Beispiel
Hier ist ein einfaches Beispiel für .gitlab-ci.yml:

stages:
 - versioning
 - build
 - deploy

versioning:
 stage: versioning
 script:
 - VERSION=$(./generate-version.sh) # Verwenden Sie Ihr eigenes Skript zur
Generierung der Version
 - echo "VERSION=$VERSION" >> build.env

build:
 stage: build
 script:
 - source build.env
 - echo "Building version $VERSION"
 # Fügen Sie hier Ihren Build-Code ein

deploy:
 stage: deploy
 script:
 - source build.env
 - echo "Deploying version $VERSION"
 # Fügen Sie hier Ihren Deployment-Code ein
 after_script:

89

 - git tag $VERSION
 - git push origin $VERSION

In diesem Beispiel verwendet generate-version.sh Ihr eigenes Skript zur Generierung der Version.
Sie können es so anpassen, dass es die Anforderungen der semantischen Versionsbezeichnung
erfüllt.

Bitte beachten Sie, dass Sie geeignete Berechtigungen benötigen, um Tags zu Ihrem Repository
hinzuzufügen. Auch kann das Script je nach den spezifischen Anforderungen Ihres Projekts
variieren.

31.2. Links
• https://semantic-release.gitbook.io/semantic-release/#highlights

• https://gitlab.com/gitlab-org/gitlab/-/issues/16290

90

https://semantic-release.gitbook.io/semantic-release/#highlights
https://gitlab.com/gitlab-org/gitlab/-/issues/16290

32. WIP: Ansible Semaphore
New UI for a good old Ansible

Ansible Semaphore is beautiful web interface for running Ansible playbooks. You do not need to
change your playbooks to start using it.

32.1. Installation

sudo snap install semaphore

32.2. Links
• https://www.ansible-semaphore.com

91

https://www.ansible-semaphore.com

33. WIP: Ansible: Eine Einführung und
Leitfaden

33.1. Einführung
In der heutigen Welt der IT ist Automatisierung unerlässlich. Es ist wichtig, effizient zu sein und
gleichzeitig sicherzustellen, dass unsere Systeme ordnungsgemäß konfiguriert sind. Hier kommt
Ansible ins Spiel. Ansible ist ein mächtiges Werkzeug für die Automatisierung, das das
Konfigurationsmanagement, die Anwendungsbereitstellung, die Netzwerkautomatisierung und
viele andere IT-Anforderungen erleichtert.

33.2. Warum Ansible?
Ansible ist ein Open-Source-Tool für die Automatisierung von Software-Bereitstellungen,
Konfigurationsmanagement und Orchestrierung von Aufgaben. Es ist einfach zu verwenden, da es
keine Agenten-Software und keine zusätzliche benutzerdefinierte Sicherheitsinfrastruktur
erfordert. Darüber hinaus verwendet es eine sehr einfache Sprache (YAML, in Form von Ansible
Playbooks), die es Systemadministratoren und Entwicklern ermöglicht, Aufgaben einfach zu
beschreiben.

33.3. Was ist Ansible?
Ansible ist ein radikal einfaches IT-Automatisierungssystem. Es behandelt die Konfiguration von
Systemen, die Bereitstellung von Software und das Orchestrieren komplexerer IT-Aufgaben wie
kontinuierliche Bereitstellungen oder die Null-Ausfallzeit-Rolling-Updates.

33.4. Grundlegende Konzepte von Ansible

33.4.1. Inventory

Das Ansible Inventory ist eine Liste von Knoten, die als Ziel für die Ansible Playbooks dienen. Ein
Knoten kann ein Server, ein Switch, ein Router oder jedes andere Gerät sein, das über das Netzwerk
zugänglich ist. Die Knoten werden im Inventory normalerweise durch ihre IP-Adresse oder ihren
Hostnamen identifiziert. Sie können auch Knoten in Gruppen organisieren, um bestimmte
Konfigurationen auf eine Gruppe von Knoten anzuwenden.

33.4.2. Playbooks

Ansible Playbooks sind YAML-Dateien, die Ihre Automatisierungs-Jobs beschreiben. Ein Playbook
kann aus einem oder mehreren 'Plays' bestehen, und ein 'Play' ist im Wesentlichen eine Reihe von
Aufgaben, die auf den im Inventory definierten Zielknoten ausgeführt werden. Diese Aufgaben
werden sequenziell ausgeführt, von oben nach unten in der Datei.

92

33.4.3. Rollen

Rollen in Ansible bieten eine Methode zur Gruppierung verwandter Aufgaben und zur
Wiederverwendung von Code. Sie können eine Rolle erstellen, die eine bestimmte Funktion
ausführt, wie zum Beispiel das Einrichten eines Web-Servers, und diese Rolle dann in
verschiedenen Playbooks verwenden. Rollen erleichtern auch die Zusammenarbeit und die Code-
Organisation, indem sie eine standardisierte Datei- und Verzeichnisstruktur bereitstellen.

33.4.4. Module

Module sind die 'Werkzeuge' in Ihrer Ansible-Werkzeugkiste. Sie führen bestimmte Aufgaben aus
und können unabhängig oder in Playbooks verwendet werden, um komplexe Aufgaben
auszuführen. Es gibt Hunderte von eingebauten Modulen in Ansible, die eine breite Palette von
Funktionen abdecken.

33.5. Ein einfaches Ansible-Beispiel

33.6. Fazit
Die Kraft von Ansible liegt in seiner Einfachheit. Es nutzt einfache, menschenlesbare YAML-
Playbooks, um komplexe Aufgaben zu automatisieren. Die grundlegenden Konzepte - Inventar,
Playbooks, Rollen und Module - sind einfach zu verstehen und doch unglaublich mächtig in ihrer
Anwendung. Mit diesen Grundlagen sind Sie gut gerüstet, um mit Ansible loszulegen und Ihre
Automatisierungsprojekte auf die nächste Stufe zu bringen.

33.7. Links / Cheatsheet
• Getting started with Ansible

• Ansible: 30 Most Important Modules for DevOps Professional -- Part 1

• Ansible: 30 Most Important Modules for DevOps Professional -- Part 2

• Ansible: 30 Most Important Modules for DevOps Professional -- Part 3

93

https://medium.com/@yhakimi/getting-started-with-ansible-and-ansible-playbooks-52072039d24b
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-1-fdd536b0790d
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-2-bb3f9739898e
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-3-6494507184bb

34. WIP: Best Practices for managing BASH
Scripts

• https://madflojo.medium.com/best-practices-for-managing-bash-scripts-be2a36aa5147

94

https://madflojo.medium.com/best-practices-for-managing-bash-scripts-be2a36aa5147

35. WIP: Caching

35.1. Links
• https://blog.devgenius.io/a-comprehensive-guide-to-distributed-caching-827f1fa5a184

95

https://blog.devgenius.io/a-comprehensive-guide-to-distributed-caching-827f1fa5a184

36. WIP: Argo-Rollouts

36.1. Links
• https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-

automatic-rollout-abort-and-rollback-54652158fdf4

96

https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-automatic-rollout-abort-and-rollback-54652158fdf4
https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-automatic-rollout-abort-and-rollback-54652158fdf4

37. WIP: Argo Workflows

37.1. Was ist Argo Workflows
• Argo: Workflow Engine for Kubernetes

37.2. Links / Cheatsheet
• https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

97

https://itnext.io/argo-workflow-engine-for-kubernetes-7ae81eda1cc5
https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

38. WIP: FluxCD
Flux the GitOps family of projects

38.1. Links
• https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-

a28497cd41e9

98

https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-a28497cd41e9
https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-a28497cd41e9

39. WIP: Hetzner - Cloud
coming soon

39.1. Links
• Private Network

• https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-
network

99

https://community.hetzner.com/tutorials/how-to-set-up-nat-for-cloud-networks/
https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-network
https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-network

40. WIP: Docker

40.1. Was ist Docker?

40.2. Funktionsweise

40.3. Häufig genutzte Commands

40.4. Links
• Stop using Alpine Image

• Understanding Docker image tags and publishing images to Docker Hub

100

https://medium.com/inside-sumup/stop-using-alpine-docker-images-fbf122c63010
https://itnext.io/understanding-docker-image-tags-and-publishing-images-to-docker-hub-b7a4f900f201

41. WIP: Crossplane
[logo] |
https://raw.githubusercontent.com/crossplane/crossplane/d910993255082fd3d302d19ac8c2682adbf1a
606/docs/media/logo.svg

41.1. What is Crossplane
Crossplane is a framework for building cloud native control planes without needing to write code.
It has a highly extensible backend that enables you to build a control plane that can orchestrate
applications and infrastructure no matter where they run, and a highly configurable frontend that
puts you in control of the schema of the declarative API it offers.

Crossplane is a Cloud Native Compute Foundation project.

41.2. Links / Cheatsheet
• Getting started with crossplane

101

https://iamarunkrish.medium.com/getting-started-with-crossplane-b3c2bd7a61d5

42. WIP: Databases - An Overview

42.1. Postgesql

42.2. MariaDB

42.3. MongoDB

42.4. Links

102

43. WIP: GitLab
Webanwendung zur Versionsverwaltung auf Git-Basis

• Issue-Tracking-System mit Kanban-Board

• Continuous Integration und Continuous Delivery (CI/CD)

• Container-Registry

• API zur Steuerung von Gitlab

43.1. Links / Cheatsheet
• Cheat Sheet for DevOps: .gitlab-ci.yml (GitLab)

• Support for Git over SSH

103

https://brunodelb.medium.com/cheat-sheet-for-devops-gitlab-ci-yml-gitlab-2ffbf0c4f7ac
https://docs.gitlab.com/operator/git_over_ssh.html

44. WIP: Helm

44.1. Welches Problem wird mit Helm gelöst?

44.2. Wie arbeitet Helm?
• Helm In Kubernetes-- Part 1: Introduction

• Helm In Kubernetes — Part 2: How to create a simple Helm Chart

• Helm In Kubernetes — Part 3: Hand on with Flow Control and Pipelines

• Helm In Kubernetes — Part 4: Publish Helm Chart To Artifact Hub using Github Pages

44.3. Helm charts testen
• Kubernetes Helm Charts Testing

44.4. Good to know
• Using GitLab As Helm Chart Registry

44.5. Links / Cheatsheet
• Create a Helm chart & deploy a Kubernetes application using it.

• Helm 3 — Secrets management, an alternative approach

104

https://leeyoongti.medium.com/helm-in-kubernetes-part-1-introduction-81c810c8f486
https://medium.com/geekculture/helm-in-kubernetes-part-2-how-to-create-a-simple-helm-chart-af899fc2741d
https://leeyoongti.medium.com/helm-in-kubernetes-part-3-hand-on-with-flow-control-and-pipelines-68a984a7e851
https://leeyoongti.medium.com/helm-in-kubernetes-part-4-publish-helm-chart-to-artifact-hub-using-github-pages-ab7f55904faa
https://faun.pub/helm-charts-testing-2091a63a83af
https://betterprogramming.pub/using-gitlab-as-helm-chart-registry-ab4d4ef42833
https://shashanksrivastava.medium.com/create-a-helm-chart-deploy-a-kubernetes-application-using-it-b79b1d31afe4
https://itnext.io/helm-3-secrets-management-4f23041f05c3

45. WIP: Helm Dashboard

45.1. Links
• https://medium.com/geekculture/k8s-helm-dashboard-d7509c5fee88

105

https://medium.com/geekculture/k8s-helm-dashboard-d7509c5fee88

46. WIP: Kubernetes - debug
coming soon

106

47. WIP: k3s - Lightweight Kubernetes

47.1. Links
• https://k3s.io

107

https://k3s.io

48. WIP: K8up - Kubernetes Backup Operator
K8up (pronounced /keɪtæpp/ or simply "ketchup") is a Kubernetes Operator distributed via a Helm
chart, compatible with OpenShift and plain Kubernetes. It allows cluster operators to:

• Backup all PVCs marked as ReadWriteMany, ReadWriteOnce or with a specific label.

• Perform individual, on-demand backups.

• Schedule backups to be executed on a regular basis.

• Schedule archivals (for example to AWS Glacier), usually executed in longer intervals.

• Perform "Application Aware" backups, containing the output of any tool capable of writing to
stdout.

• Check the backup repository for its integrity.

• Prune old backups from a repository.

• Restore backups with the help of the k8up CLI tool.

• Based on top of Restic, it can store backups in any S3-compatible storage, such as Amazon S3 or
Minio.

• K8up is written in Go and is an Open Source project hosted at GitHub.

48.1. How to Install K8up
coming soon

48.2. Links
• https://k8up.io

108

https://k8up.io

49. WIP: kOps - Kubernetes Operations
The easiest way to get a production grade Kubernetes cluster up and running.

49.1. What is kOps?
We like to think of it as kubectl for clusters.

kops will not only help you create, destroy, upgrade and maintain production-grade, highly
available, Kubernetes cluster, but it will also provision the necessary cloud infrastructure.

AWS (Amazon Web Services) and GCE (Google Cloud Platform) are currently officially supported,
with DigitalOcean, Hetzner and OpenStack in beta support, and Azure in alpha.

49.2. Features
• Automates the provisioning of Highly Available Kubernetes clusters

• Built on a state-sync model for dry-runs and automatic idempotency

• Ability to generate Terraform

• Supports zero-config managed kubernetes add-ons

• Command line autocompletion

• YAML Manifest Based API Configuration

• Templating and dry-run modes for creating Manifests

• Choose from most popular CNI Networking providers out-of-the-box

• Multi-architecture ready with ARM64 support

• Capability to add containers, as hooks, and files to nodes via a cluster manifest

49.3. Installing

49.3.1. Prerequisite

kubectl is required, see here.

49.3.2. Linux

1 curl -Lo kops https://github.com/kubernetes/kops/releases/download/$(curl -s
 https://api.github.com/repos/kubernetes/kops/releases/latest | grep tag_name | cut
 -d '"' -f 4)/kops-linux-amd64
2 chmod +x kops
3 sudo mv kops /usr/local/bin/kops

109

49.4. Links
• Getting started

110

https://kops.sigs.k8s.io/getting_started/

50. WIP: Kind - Kubernetes in Docker
Kind ist ein Werkzeug zum Betreiben lokaler Kubernetes-Cluster unter Verwendung von Docker-
Container „Knoten". Kind wurde hauptsächlich zum Testen von Kubernetes selbst entwickelt, kann
aber auch für lokale Entwicklung oder CI verwendet werden.

50.1. Installation
Linux

1 # For AMD64 / x86_64
2 [$(uname -m) = x86_64] && curl -Lo ./kind
 https://kind.sigs.k8s.io/dl/v0.20.0/kind-linux-amd64
3 # For ARM64
4 [$(uname -m) = aarch64] && curl -Lo ./kind
 https://kind.sigs.k8s.io/dl/v0.20.0/kind-linux-arm64
5 chmod +x ./kind
6 sudo mv ./kind /usr/local/bin/kind

50.2. Create Cluster

111

51. WIP: Kubespay

51.1. Was ist kubespay
Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain
knowledge for generic OS/Kubernetes clusters configuration management tasks.

Kubespray provides:

Highly available cluster. Composable (Choice of the network plugin for instance).

Supports most popular Linux distributions:

Flatcar Container Linux by Kinvolk Debian Bullseye, Buster, Jessie, Stretch Ubuntu 16.04, 18.04,
20.04, 22.04 CentOS/RHEL 7, 8, 9 Fedora 35, 36 Fedora CoreOS openSUSE Leap 15.x/Tumbleweed
Oracle Linux 7, 8, 9 Alma Linux 8, 9 Rocky Linux 8, 9 Kylin Linux Advanced Server V10 Amazon
Linux 2 Continuous integration tests.

51.2. Links / Cheatsheets
• https://link.medium.com/jkNWyPVkwub

112

https://link.medium.com/jkNWyPVkwub

52. WIP: Kubesphere

52.1. Was ist Kubesphere?
KubeSphere ist eine offene Plattform für die Unternehmensklasse, die auf Kubernetes aufbaut und
Anwendern eine einfache Möglichkeit zur Konfiguration, Bereitstellung und Verwaltung von
Anwendungen auf Kubernetes bietet, unabhängig davon, ob diese Anwendungen in öffentlichen
Clouds, privaten Clouds oder On-Premises-Servern bereitgestellt werden.

KubeSphere bietet eine Reihe von Funktionen wie Multi-Tenancy-Management,
Netzwerkverwaltung, Speicherverwaltung, DevOps, Anwendungsmanagement und mehr. Es
unterstützt auch mehrere Netzwerk-Plugins, Integration von Persistent-Volume-Providern und
Plugin-Erweiterungen, um die Komplexität der Kubernetes-Plattform zu minimieren.

Die Plattform wurde entwickelt, um Unternehmen dabei zu helfen, ihre Microservices-
Architekturen und DevOps-Prozesse zu optimieren, und bietet einen einheitlichen Bereich zur
Verwaltung ihrer gesamten Infrastruktur und Anwendungen.

52.2. Links
• Air gapped installation

113

https://www.kubesphere.io/docs/v3.3/installing-on-linux/introduction/air-gapped-installation/

53. WIP: KubeVela

53.1. Was ist KubeVela?
KubeVela ist eine einfach zu bedienende und dennoch extrem flexible Kubernetes-Plattform für
Entwickler. KubeVela bietet eine Reihe von Funktionen, die Entwicklern helfen, ihre Anwendungen
effizient zu entwickeln, zu testen, zu bereitstellen und zu skalieren.

53.2. Vorteile von KubeVela
Die Verwendung von KubeVela bietet eine Reihe von Vorteilen:

• Einfache Bedienung: KubeVela bietet eine vereinfachte Benutzererfahrung, die es Entwicklern
ermöglicht, sich auf das Schreiben von Code zu konzentrieren, anstatt sich mit
Infrastrukturdetails zu befassen.

• Extreme Flexibilität: Mit KubeVela können Entwickler jede Art von Anwendung auf
Kubernetes bereitstellen, von einfachen Microservices bis hin zu komplexen Anwendungen mit
mehreren Komponenten.

• Applikationsorientierter Ansatz: Im Gegensatz zu anderen Kubernetes-Plattformen, die
infrastrukturorientiert sind, ist KubeVela anwendungsorientiert. Dies bedeutet, dass die
Anwendung und nicht die Infrastruktur im Mittelpunkt steht.

• Interoperabilität: KubeVela ist vollständig kompatibel mit allen bestehenden Kubernetes-
Erweiterungen und -Technologien. Dies bedeutet, dass Sie KubeVela nahtlos in Ihre bestehende
Kubernetes-Infrastruktur integrieren können.

53.3. Wie man KubeVela einsetzt
KubeVela kann in jeder Kubernetes-Umgebung verwendet werden. Sie können es auf Ihrem lokalen
Rechner, in Ihrer privaten Cloud oder in jeder öffentlichen Cloud, die Kubernetes unterstützt,
einsetzen. Um KubeVela zu verwenden, installieren Sie es einfach in Ihrer Kubernetes-Umgebung
und verwenden dann das KubeVela-CLI, um Ihre Anwendungen zu definieren und zu verwalten.

53.4. Links
• https://blog.devgenius.io/k8s-tools-kubevela-part-one-f93078b06ed5

114

https://blog.devgenius.io/k8s-tools-kubevela-part-one-f93078b06ed5

54. WIP: Loadbalancer for K8s

54.1. HAPROXY
Die Installation, Konfiguration und Nutzung eines HAProxy-Load-Balancers auf einem Ubuntu-
System erfolgt in mehreren Schritten. Hier ist eine grundlegende Anleitung:

54.1.1. Installation von HAProxy

1. Update des Systems: Aktualisieren Sie zuerst Ihre Paketlisten und Pakete, um sicherzustellen,
dass alles auf dem neuesten Stand ist. ` sudo apt update sudo apt upgrade `

2. Installation von HAProxy: ` sudo apt install haproxy `

54.1.2. Grundkonfiguration von HAProxy

1. Backup der Konfigurationsdatei: Bevor Sie Änderungen vornehmen, erstellen Sie eine
Sicherungskopie der ursprünglichen Konfigurationsdatei. ` sudo cp /etc/haproxy/haproxy.cfg
/etc/haproxy/haproxy.cfg.original `

2. Bearbeiten der Konfigurationsdatei: Öffnen Sie die Konfigurationsdatei mit einem Texteditor
Ihrer Wahl (z.B. nano oder vim). ` sudo nano /etc/haproxy/haproxy.cfg `

3. Konfiguration anpassen: Passen Sie die Konfigurationsdatei an Ihre Anforderungen an. Sie
müssen Abschnitte für defaults, frontend und backend definieren.

◦ defaults: Allgemeine Einstellungen wie Zeitlimits.

◦ frontend: Definiert, wie HAProxy Anfragen von Clients empfängt.

◦ backend: Definiert, an welche Server die Anfragen weitergeleitet werden sollen.

.Beispiel für eine einfache Konfiguration, die den HTTP-Verkehr auf zwei
Webserver verteilt:
[source, yaml]

frontend http_front
 bind *:80
 default_backend http_back

backend http_back
 balance roundrobin
 server web1 192.168.1.1:80 check
 server web2 192.168.1.2:80 check

54.1.3. HAProxy starten und testen

1. HAProxy neu starten: Nachdem Sie die Konfigurationsdatei bearbeitet haben, müssen Sie

115

HAProxy neu starten, um die Änderungen zu übernehmen.

sudo systemctl restart haproxy
```

2. Status überprüfen: Stellen Sie sicher, dass HAProxy ordnungsgemäß läuft. ` sudo systemctl
status haproxy `

3. Testen: Überprüfen Sie, ob HAProxy wie erwartet funktioniert, indem Sie auf die IP-Adresse
oder den Domainnamen Ihres HAProxy-Servers zugreifen.

54.1.4. Zusätzliche Schritte und Tipps

• Sicherheit: Stellen Sie sicher, dass Ihre HAProxy-Installation sicher ist. Dies kann die
Einrichtung von Firewalls, die Beschränkung des Zugriffs auf bestimmte IPs und die
Verwendung von HTTPS umfassen.

• Logging: Konfigurieren Sie Logging, um Probleme zu diagnostizieren und den Verkehr zu
überwachen.

• Erweiterte Konfigurationen: HAProxy bietet viele erweiterte Optionen wie SSL/TLS-
Terminierung, Session-Persistenz, HTTP/2-Unterstützung und mehr.

54.2. Links

116



55. WIP: Rancher

55.1. Links
• https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-

Anforderungen-haerten-9009530.html

117

https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-Anforderungen-haerten-9009530.html
https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-Anforderungen-haerten-9009530.html


56. WIP: RKE2 - Rancher
coming soon

56.1. Install

56.1.1. ARM64

mkdir /root/rke2-artifacts && cd /root/rke2-artifacts/
wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2-
images.linux-arm64.tar.gz
wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2.linux-
arm64.tar.gz
wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/sha256sum-
arm64.txt
curl -sfL https://get.rke2.io --output install.sh
INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh install.sh

systemctl enable rke2-server
systemctl start rke2-server

Kubectl

curl -LO https://dl.k8s.io/release/v1.28.4/bin/linux/arm64/kubectl
install kubectl /usr/local/bin
rm kubectl -f

56.2. Create Aliase

alias cn='kubectl config set-context --current --namespace='
alias k='kubectl'
alias po='kubectl get po -A'
alias epo='kubectl get po -A | grep -v "Running|Complited"'

56.3. Links
• Offizelle Doku

118

https://docs.rke2.io/


57. WIP: Longhorn
coming soon

119



58. WIP: Velero
Velero (formerly Heptio Ark) gives you tools to back up and restore your Kubernetes cluster
resources and persistent volumes. You can run Velero with a cloud provider or on-premises. Velero
lets you:

• Take backups of your cluster and restore in case of loss.

• Migrate cluster resources to other clusters.

• Replicate your production cluster to development and testing clusters.

Velero consists of:

• server that runs on your cluster

• command-line client that runs locally

58.1. Links
• https://velero.io

120

https://velero.io


59. WIP: Kubernetes
[Kubernetes logo] | https://upload.wikimedia.org/wikipedia/commons/6/67/Kubernetes_logo.svg

• Bare Metal Kubernetes with MetalLB, HAProxy, Longhorn, and Prometheus

• Kubernetes (K8s) Zero to Hero

• My Kubernetes Homelab project

59.1. Dashboard
• Kubernetes Dashboards: Octant

59.2. Authentication
• Kubernetes and LDAP: Enterprise Authentication for Kubernetes

• https://loft-sh.medium.com/10-essentials-for-kubernetes-access-control-a67ae72977dd[10
Essentials for Kubernetes Access Control

59.3. Downscaler
• How to scale down Kubernetes cluster workloads during off-hours

59.4. Ingress
• Setting Up an On-premise Kubernetes Cluster from Scratch

• Kubernetes Ingress Deep Dive

• Kubernetes Gateway API — A successor to existing Kubernetes Ingress!

59.5. Registry
• Install a Private Docker Container Registry in Kubernetes

59.6. Persistant Storage
• Kubernetes Persistent Volumes: Examples & Best Practices Kubernetes Storage — Part 1 — NFS

complete tutorial

59.7. Kubernetes - Backup / Restore
• Kasten - Kubernetes backup & restore is now effortless

121

https://medium.com/geekculture/bare-metal-kubernetes-with-metallb-haproxy-longhorn-and-prometheus-370ccfffeba9
https://medium.com/data-revolution/kubernetes-k8s-zero-to-hero-9d49d13954a
https://medium.com/@ilankushnir/kws-cluster-e7e079cf103b
https://loft-sh.medium.com/kubernetes-dashboards-octant-43603005858a
https://loft-sh.medium.com/kubernetes-and-ldap-enterprise-authentication-for-kubernetes-91fb2f2e8942
https://loft-sh.medium.com/10-essentials-for-kubernetes-access-control-a67ae72977dd
https://tanmay-bhat.medium.com/how-to-scale-down-kubernetes-cluster-workloads-during-off-hours-fe4bc477ed51
https://medium.com/@ZiXianZeroX/setting-up-an-on-premise-kubernetes-cluster-from-scratch-8e3a6b415387
https://luandy-4171.medium.com/kubernetes-ingress-deep-dive-275b0d42e9ba
https://sanjimoh.medium.com/kubernetes-gateway-api-a-successor-to-existing-kubernetes-ingress-19bb3bebbb74
https://faun.pub/install-a-private-docker-container-registry-in-kubernetes-7fb25820fc61
https://loft-sh.medium.com/kubernetes-persistent-volumes-examples-best-practices-a201c6403845
https://itnext.io/kubernetes-storage-part-1-nfs-complete-tutorial-75e6ac2a1f77
https://itnext.io/kubernetes-storage-part-1-nfs-complete-tutorial-75e6ac2a1f77
https://medium.com/geekculture/kubernetes-backup-restore-is-now-effortless-e788fccd8cde


59.8. Kubernetes Operator
• Build a Kubernetes Operator in 10 Minutes

59.9. Multi-Tenant
• Multi-Tenant Kubernetes Clusters: Challenges and Useful Tooling

59.10. Networking
• https://opensource.com/article/22/6/kubernetes-networking-fundamentals

59.11. k3s
• The Ultimate Guide to Building Your Personal K3S Cluster

• Creating a Local Development Kubernetes Cluster with K3D and Traefik Proxy

59.12. KubeVirt
• Virtuelle Maschinen: KubeVirt als bevorzugtes Tool für VM-Betrieb auf Kubernetes

59.13. Kosten Management
• The Cost of Managed Kubernetes — A Comparison

• https://loft.sh/

• Checklist for Kubernetes-Based Development

59.14. Howto’s
• Migrating applications between Kubernetes clusters

59.15. Other Tools
• Reload configmap without restarting the pod

• Kr8s — Seamless Kubernetes Cluster Data Visualization

• Rancher Desktop and nerdctl for local K8s dev

• How to Set Kubernetes Resource Requests and Limits

• 6 Tools to Run Kubernetes Locally

59.16. Links / Cheatsheets
• Kubernetes Multi-Tenancy Approach

122

https://betterprogramming.pub/build-a-kubernetes-operator-in-10-minutes-11eec1492d30
https://loft-sh.medium.com/multi-tenant-kubernetes-clusters-challenges-and-useful-tooling-559079eb1ad9
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://itnext.io/the-ultimate-guide-to-building-your-personal-k3s-cluster-bf2643f31dd3
https://codeburst.io/creating-a-local-development-kubernetes-cluster-with-k3s-and-traefik-proxy-7a5033cb1c2d
https://www.heise.de/news/Virtuelle-Maschinen-KubeVirt-als-bevorzugtes-Tool-fuer-VM-Betrieb-auf-Kubernetes-7062397.html
https://loft-sh.medium.com/the-cost-of-managed-kubernetes-a-comparison-1f0a4b47bce1
https://loft.sh/
https://loft-sh.medium.com/checklist-for-kubernetes-based-development-46f384a0ff4f
https://medium.com/google-cloud/migrating-applications-between-kubernetes-clusters-8455cf1bfccd
https://mouliveera.medium.com/how-to-update-configmap-on-pod-without-restart-be3c0b4433af
https://medium.com/@kr8sdevelopers/kr8s-kubernetes-cluster-data-visualization-at-your-fingertips-ab4f8b4a2f0
https://itnext.io/rancher-desktop-and-nerdctl-for-local-k8s-dev-d1348629932a
https://itnext.io/how-to-set-kubernetes-resource-requests-and-limits-a-saga-to-improve-cluster-stability-and-a7b1800ecff1
https://yankeexe.medium.com/6-tools-to-run-kubernetes-locally-1655ebe0841e
https://towardsaws.com/kubernetes-multi-tenancy-approach-b0f58d615971


• kubectl

• Kubernetes: Apprentice Cookbook

• Learn Kubernetes using Interactive Browser-Based Scenarios

• Managing Kubernetes Using Kubectl — Cheat Sheet

• * kubectl - Cheatsheet

123

https://kubernetes.io/de/docs/reference/kubectl/cheatsheet/
https://aveuiller.medium.com/kubernetes-apprentice-cookbook-90d8c11ccfc3
https://katacoda.com/courses/kubernetes/
https://levelup.gitconnected.com/managing-kubernetes-using-kubectl-cheat-sheet-19e39f206fe8
https://kubernetes.io/docs/reference/kubectl/cheatsheet/


60. WIP: Kasten

124



61. WIP: Keycloak

125



62. WIP: RKE2 - Rancher
coming soon

62.1. Install

62.1.1. ARM64

1 mkdir /root/rke2-artifacts && cd /root/rke2-artifacts/
2 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2-
  images.linux-arm64.tar.gz
3 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2.linux-
  arm64.tar.gz
4 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/sha256sum-
  arm64.txt
5 curl -sfL https://get.rke2.io --output install.sh
6 INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh
  install.sh
7 
8 systemctl enable rke2-server
9 systemctl start rke2-server

Kubectl

1 curl -LO https://dl.k8s.io/release/v1.28.4/bin/linux/arm64/kubectl
2 install kubectl /usr/local/bin
3 rm kubectl -f

k9s

1 curl -LO
  https://github.com/derailed/k9s/releases/download/v0.29.1/k9s_Linux_arm64.tar.gz
2 tar xvzf k9s_Linux_arm64.tar.gz k9s
3 install k9s /usr/local/bin
4 rm -f k9s k9s_Linux_arm64.tar.gz

62.2. Create Aliase

1 alias kcns='kubectl config set-context --current --namespace'
2 alias k='kubectl'
3 alias kpo='kubectl get po -A'
4 alias kepo='kubectl get po -A | grep -v "Running|Complited"'

126



62.3. Links
• Offizelle Doku

127

https://docs.rke2.io/


63. WIP: Kustomize

128



64. WIP: Monitoring

129



65. WIP: OpenLens

130



66. WIP: Planing - System Blueprints

66.1. Links
• https://blog.devgenius.io/system-design-blueprint-the-ultimate-guide-e27b914bf8f1

131

https://blog.devgenius.io/system-design-blueprint-the-ultimate-guide-e27b914bf8f1


67. WIP: Python
Python ist eine beliebte, hochrangige Programmiersprache, die für ihre Lesbarkeit und einfache
Syntax bekannt ist. Sie wird in vielen Bereichen wie Webentwicklung, Data Science, künstliche
Intelligenz, Maschinelles Lernen und mehr verwendet.

67.1. Einsatz
Mit Python können Sie viele Dinge tun, zum Beispiel:

• Webseiten und Web-Apps erstellen (mit Frameworks wie Django oder Flask)

• Daten analysieren und visualisieren (mit Bibliotheken wie pandas, NumPy und matplotlib)

• Maschinelles Lernen und künstliche Intelligenz implementieren (mit Tools wie scikit-learn und
TensorFlow)

67.2. Lernen
Um Python zu lernen, können Sie die folgenden Schritte befolgen:

Grundlagen erlernen: Beginnen Sie mit den Grundlagen der Programmierung und der Python-
Syntax. Es gibt viele kostenlose Ressourcen online, wie zum Beispiel die offizielle Python-
Dokumentation oder Websites wie Codecademy und Coursera.

Praxisprojekte durchführen: Wenden Sie das, was Sie gelernt haben, auf echte Projekte an. Das
kann so einfach sein wie ein Programm, das Text in der Konsole ausgibt, oder so komplex wie eine
voll funktionsfähige Web-App.

Erweiterung Ihrer Kenntnisse: Lernen Sie über spezifische Bibliotheken und Frameworks in den
Bereichen, die Sie am meisten interessieren, wie z.B. Django für Webentwicklung oder TensorFlow
für Maschinelles Lernen.

Gemeinschaft beitreten: Es gibt eine riesige und unterstützende Python-Gemeinschaft online.
Foren wie Stack Overflow und Reddit können hilfreiche Ressourcen sein, um Fragen zu stellen und
Antworten auf häufige Probleme zu finden.

132



68. WIP: Quarkus

68.1. Einleitung
Quarkus ist ein Kubernetes-native Java-Stack, der für die GraalVM und HotSpot angepasst ist.

68.2. Vorteile
Quarkus zielt darauf ab, das Produktivitätsparadigma von Plattformen wie Node.js, Ruby on Rails
und Spring Boot in den Java-Ökosystem zu bringen, während es gleichzeitig schneller Boot-Zeit,
geringere Speicherauslastung, verbesserte Entwicklerfreundlichkeit und bessere Cloud-Integration
bietet.

68.3. Merkmale
• Live Coding: Änderungen werden in Echtzeit in Ihrer laufenden Anwendung angezeigt.

• Imperative und Reaktive Stile: Quarkus vereinheitlicht die imperative und reaktive
Programmierung.

• Standardsbasiert: Quarkus verwendet bekannte Enterprise-APIs und Standards.

• Kubernetes-native: Es ist speziell für GraalVM und HotSpot entwickelt und optimiert worden,
um die Anforderungen moderner Container und Cloud-Plattformen zu erfüllen.

68.4. Links
• https://quarkus.io

133

https://quarkus.io


69. WIP: Teleport

69.1. Was ist Teleport
Identity-Native Infrastructure Access

Teleport replaces the #1 source of data breaches — secrets — with true identity to deliver phishing-
proof zero trust access for every engineer and service connected to your global infrastructure.

69.2. Links
• https://goteleport.com/

134

https://goteleport.com/


70. WIP: Artifactories

70.1. Harbor

70.2. Nexus

70.3. Registry (docker)

70.4. GitLab

135



71. WIP: Vaults

136



72. WIP: Quarkus

72.1. Einleitung
Quarkus ist ein Kubernetes-native Java-Stack, der für die GraalVM und HotSpot angepasst ist.

72.2. Vorteile
Quarkus zielt darauf ab, das Produktivitätsparadigma von Plattformen wie Node.js, Ruby on Rails
und Spring Boot in den Java-Ökosystem zu bringen, während es gleichzeitig schneller Boot-Zeit,
geringere Speicherauslastung, verbesserte Entwicklerfreundlichkeit und bessere Cloud-Integration
bietet.

72.3. Merkmale
• Live Coding: Änderungen werden in Echtzeit in Ihrer laufenden Anwendung angezeigt.

• Imperative und Reaktive Stile: Quarkus vereinheitlicht die imperative und reaktive
Programmierung.

• Standardsbasiert: Quarkus verwendet bekannte Enterprise-APIs und Standards.

• Kubernetes-native: Es ist speziell für GraalVM und HotSpot entwickelt und optimiert worden,
um die Anforderungen moderner Container und Cloud-Plattformen zu erfüllen.

72.4. Links
• https://quarkus.io

137

https://quarkus.io


73. Sammlung nützlicher Befehle und
Scripte

73.1. git
Abfrage und Sortierung von git-tags (grep -v "-" → blendet rc aus):

git tag --sort=-v:refname | grep -v "-" | head -n 3

Ausgabe:

v16.6.1
v16.6.0
v16.5.3

Abfrage und Sortierung von git remote repos

# Abfrage von rke2 git repo
git -c 'versionsort.suffix=-' ls-remote --exit-code --refs --sort='version:refname' \
    --tags https://github.com/rancher/rke2.git '*.*.*'  | grep -v - | \
    grep "v1.26" | tail --lines=1 | cut --delimiter='/' --fields=3

Ausgabe:

# Latest version from rke2 for MINOR release v1.26
v1.26.13+rke2r1

73.2. kubectl
change namespace

kubectl config set-context --current --namespace=xxx

Show details of k8s nodes

kubectl describe nodes
# or
kubectl describe node <nodename>

138


	GitOps / DevOps / AppOps / SRE: Konzepte & Tools
	Inhaltsverzeichnis
	1. WIP: Aktuelle ToDos
	2. WIP: Use Terraform and Ansible to setup K8s
	3. Einstieg in DevOps
	4. Kaniko
	5. Packer.io
	6. Skopeo
	7. Terraform
	8. ArgoCD
	9. GitLab Pipelines
	10. Gitlab pipelines in advanced
	11. Jenkins
	12. Tekton
	13. Kubernetes
	14. k9s
	15. kURL
	16. Podman
	17. Trivy
	18. Asciidoctor
	19. Hugo
	20. Git
	21. Semantic Versioning
	22. RKE2 - Rancher
	23. HAProxy
	24. Consul
	25. Tmux
	26. Vagrant
	27. Gegenüberstellung: Ansible, Chef, Puppet und SaltStack
	28. WIP: GitOps / DevOps / SRE: Konzepte & Tools
	29. WIP: DevOps - Konzepte
	30. WIP: Fähigkeiten für einen DevOps-Ingenieur
	31. Semantische Versionsbezeichnungen
	32. WIP: Ansible Semaphore
	33. WIP: Ansible: Eine Einführung und Leitfaden
	34. WIP: Best Practices for managing BASH Scripts
	35. WIP: Caching
	36. WIP: Argo-Rollouts
	37. WIP: Argo Workflows
	38. WIP: FluxCD
	39. WIP: Hetzner - Cloud
	40. WIP: Docker
	41. WIP: Crossplane
	42. WIP: Databases - An Overview
	43. WIP: GitLab
	44. WIP: Helm
	45. WIP: Helm Dashboard
	46. WIP: Kubernetes - debug
	47. WIP: k3s - Lightweight Kubernetes
	48. WIP: K8up - Kubernetes Backup Operator
	49. WIP: kOps - Kubernetes Operations
	50. WIP: Kind - Kubernetes in Docker
	51. WIP: Kubespay
	52. WIP: Kubesphere
	53. WIP: KubeVela
	54. WIP: Loadbalancer for K8s
	55. WIP: Rancher
	56. WIP: RKE2 - Rancher
	57. WIP: Longhorn
	58. WIP: Velero
	59. WIP: Kubernetes
	60. WIP: Kasten
	61. WIP: Keycloak
	62. WIP: RKE2 - Rancher
	63. WIP: Kustomize
	64. WIP: Monitoring
	65. WIP: OpenLens
	66. WIP: Planing - System Blueprints
	67. WIP: Python
	68. WIP: Quarkus
	69. WIP: Teleport
	70. WIP: Artifactories
	71. WIP: Vaults
	72. WIP: Quarkus
	73. Sammlung nützlicher Befehle und Scripte

