G1tOps / DevOps / AppOps / SRE

Konzepte & Tools

Thomas Siwczak

Version 0.29.3, 21.02.2024

Inhaltsverzeichnis

1. WIP: Aktuelle ToDos

2. WIP: Use Terraform and Ansible to setup K8s
3. Einstieg in DevOps

4. Kaniko

5.
6
7
8
9

Packer.io

. Skopeo

. Terraform

. ArgoCD

. GitLab Pipelines

10. Gitlab pipelines in advanced

11
12.
13.

. Jenkins
Tekton
Kubernetes

14. k9s

15.

kURL

16. Podman
17. Trivy
18. Asciidoctor

19.

Hugo

20. Git

21.
22.
23.

Semantic Versioning
RKE2 - Rancher
HAProxy

24. Consul

25.

Tmux

26. Vagrant

27. Gegentiberstellung: Ansible, Chef, Puppet und SaltStack
28. WIP: GitOps / DevOps / SRE: Konzepte & Tools

29.

WIP: DevOps - Konzepte

30. WIP: Fahigkeiten fiir einen DevOps-Ingenieur

31.
32.
33.

Semantische Versionsbezeichnungen
WIP: Ansible Semaphore
WIP: Ansible: Eine Einfiihrung und Leitfaden

34. WIP: Best Practices for managing BASH Scripts

35

. WIP: Caching

36. WIP: Argo-Rollouts
37. WIP: Argo Workflows
38. WIP: FluxCD

11
13
15
17
23
26
29
32
34
36
39
41
43
44
48
60
62
72
73
75
78
79
82
83
85
86
88
89
91
92
94
95
96
97
98

39. WIP:
40. WIP:
41. WIP:
42. WIP:
43. WIP:
44. WIP:
45. WIP:
46. WIP:
47. WIP:
48. WIP:
49. WIP:
50. WIP:
51. WIP:
52. WIP:
53. WIP:
54. WIP:
55. WIP:
56. WIP:
57. WIP:
58. WIP:
59. WIP:
60. WIP:
61. WIP:
62. WIP:
63. WIP:
64. WIP:
65. WIP:
66. WIP:
67. WIP:
68. WIP:
69. WIP:
70. WIP:
71. WIP:

72. WIP

Hetzner - Cloud

Docker

Crossplane

Databases - An Overview
GitLab

Helm

Helm Dashboard
Kubernetes - debug

k3s - Lightweight Kubernetes
K8up - Kubernetes Backup Operator
kOps - Kubernetes Operations
Kind - Kubernetes in Docker
Kubespay

Kubesphere

KubeVela

Loadbalancer for K8s
Rancher

RKE2 - Rancher

Longhorn

Velero

Kubernetes

Kasten

Keycloak

RKE2 - Rancher

Kustomize

Monitoring

OpenLens

Planing - System Blueprints
Python

Quarkus

Teleport

Artifactories

Vaults

: Quarkus

73. Sammlung nttzlicher Befehle und Scripte

99
100
101
102
103
104
105
106
107
108
109
111
112
113
114
115
117
118
119
120
121
124
125
126
128
129
130
131
132
133
134
135
136
137
138

1. WIP: Aktuelle ToDos

1.1. Private

1.1.1. Ideen

» Sheatsheets / hdufig genutzte Befehle mit kurzer Erkldrung, direkt bei den einzelnen Tools
auflisten

* https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-
9629194.html

1.1.2. Ansible

O Verfiigbare Versionen von Software-Projekten abfragen und in einer Ubersicht anzeigen (am
besten mit Datum der Veroffentlichung)

O Benutzte / im Einsatz befindliche Versionen auf einer Ubersicht anzeigen

O Folgende Produkte sollten angezeigt werden (Gitlab / Gitlab-Runner, rke2, Rancher, Kubernetes,
Harbor, AWX, Dokuwiki, ArgoCD, usw)

1.1.3. Gitlab

«

Gitlab runner auf Server mit docker compose

Docker Registry aktivieren

QR O

Gitlab runner in k8s installieren

Q

Gitlab runner konfigurieren (extra helper image for armé64)
Gitlab runner in k8s testen

Gitlab runner - autoscaler?

Container Registry aktivieren fiir CI/CD

Gitlab komplexe Pipelines

Gitlab Pipeline import

0 0O 0O O o O

Gitlab Pipeline iiber mehrere Projekte?

1.1.4. Hetzner Cloud

O Nat Cloud Setup

O Ansible over Bastian Host
O Default Route

O HaProxy Auto Scaling

O Terraform with Ansible

https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-9629194.html
https://www.heise.de/hintergrund/Modularisierte-Infrastructure-as-Code-in-Terraform-9629194.html
https://community.hetzner.com/tutorials/how-to-set-up-nat-for-cloud-networks/
https://www.jeffgeerling.com/blog/2022/using-ansible-playbook-ssh-bastion-jump-host
https://www.cyberciti.biz/faq/howto-linux-configuring-default-route-with-ipcommand
https://blog.stefan-koch.name/2021/05/02/load-balancing-auto-scaling-open-source-haproxy
https://www.ansible.com/blog/providing-terraform-with-that-ansible-magic

1.1.5. Convert Asciidoctor Documents to DokuWiki

O Asciidoc to docbook or html

O

O

Pandoc from html/docbook to Dokuwiki

Output in DokuWiki testen

1.1.6. Other

0O 0O 0O o o o o o

Full featured k8s for running micro services

Internet Monitor

Scaling Video Encoding

Zero Mailbox

https://ifconfig.me/ip
https://dev.to/ajeetraina/10-kubernetes-visualization-tool-that-you-cant-afford-to-miss-414k
https://picluster.ricsanfre.com/docs/ansible/

https://github.com/wikitops/ansible_kubernetes_argocd/tree/master/roles/argocd/tasks

1.1.7. Ubuntu Autoinstall

4
«

&

autoinstall beim Boot aufrufen - Link
iso anpassen um automatisch autoinstall-file zu laden

was passiert, wenn file nicht gefunden wird? NOTE: Syntax fir Grub Boot Menu = quiet
autoinstall ds=nocloud)\;s=http://x.X.X.X

1.1.8. Rancher / Kubernetes

 § Q «

Q

0 0O 0O o o oo

[\

K3S HA testen

Rancher Server v2.5.17 installieren

Dev Cluster Installieren

Rancher Server upgraden auf 2.6.9 (Docker)

Dev & Prod Cluster Kubernetes upgraden?

Rancher Server auf rke2 und helm umstellen

Backup von Rancher Server wiederherstellen

Neues Cluster mit Prod Rancher verbinden oder neu aufsetzen
Dev Cluster upgraden auf 2.6.9 - kompatible K8s Version
Dev Cluster auf rke2 umstellen

Prod Cluster upgraden auf 2.6.9 - kompatible K8s Version
Prod Cluster auf rke2 umstellen

Rancher Server auf v2.7.5 upgraden

https://medium.com/@martin.hodges/how-to-create-a-full-featured-kubernetes-platform-for-running-micro-services-c145ab71a2eb
https://github.com/geerlingguy/internet-pi
https://betterprogramming.pub/scaling-video-encoding-with-nodejs-and-kubernetes-ffa04cbf55dc
https://missiveapp.com/blog/inbox-zero
https://ifconfig.me/ip
https://dev.to/ajeetraina/10-kubernetes-visualization-tool-that-you-cant-afford-to-miss-414k
https://picluster.ricsanfre.com/docs/ansible/
https://github.com/wikitops/ansible_kubernetes_argocd/tree/master/roles/argocd/tasks
https://www.jimangel.io/posts/automate-ubuntu-22-04-lts-bare-metal/

1.2. WORK

1.2.1. Egress Gateway

O CNI Calico

O Calico and k8s egress

O Kubernetes Egress on rke2 Cluster for AWX

O Kubernetes Egress for Videoencoding

O https://isovalent.com/blog/post/2022-05-static-egress-gateway/

O https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

1.2.2. Other

O Virenscanner
0O ArgoCD
O Rancher PV (Netapp) wie ist es im Moment?

O Kubernetes Adin DEV an IDA Ubergeben

1.2.3. Dokumentation

O RKE2 Cluster installation / Update
O Rancher Installation / Update
O Kubernetes Konfiguration / Installation

O App Deployment (AirGap)

1.3. Rancher Server upgraden auf 2.6.9

1.4. Rancher Server auf rke2 und helm umstellen

Install rke2

1 # curl -sflL https://qget.rke2.io | sh -
2
3 # Version for Rancher 2.6.67

4 curl -sfL https://get.rke2.io | INSTALL_RKE2_VERSION=v1.24.17+rke2r1 sh -

5
6 systemctl enable rke2-server
/ systemctl start rke2-server

Install link to kubectl

1T 1n -s /var/lib/rancher/rke2/bin/kubectl /usr/local/bin/kubectl
2 1n -s /var/lib/rancher/rke2/bin/kubectl /usr/local/bin/k

https://docs.tigera.io/calico/latest/about/kubernetes-training/about-kubernetes-egress
https://ranchermanager.docs.rancher.com/integrations-in-rancher/istio/configuration-options/install-istio-on-rke2-cluster
https://isovalent.com/blog/post/2022-05-static-egress-gateway/
https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

3
4 mkdir /root/.kube
5 1n -s /etc/rancher/rke2/rke2.yaml /root/.kube/config

Install Helm

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Add the Helm Chart Repository for Rancher

helm repo add rancher-stable https://releases.rancher.com/server-charts/stable

Create a Namespace for Rancher

kubectl create namespace cattle-system

Install Cert-Manager

If you have installed the CRDs manually instead of with the ‘--set installCRDs=true’
option added to your Helm install command, you should upgrade your CRD resources
before upgrading the Helm chart:

kubectl apply -f https://github.com/cert-manager/cert-
manager/releases/download/v1.13.3/cert-manager.crds.yaml

Add the Jetstack Helm repository
helm repo add jetstack https://charts.jetstack.io

Update your local Helm chart repository cache
helm repo update

Install the cert-manager Helm chart

helm install cert-manager jetstack/cert-manager \
--namespace cert-manager \
--create-namespace

Show pods in cert-manager namespace
kubectl get pods --namespace cert-manager

Install Rancher with helm

1 helm install rancher rancher-stable/rancher \

2 --namespace cattle-system \

3 --set hostname=rancher.siwczak.de \

4 --set bootstrapPassword=admin \

5 --set ingress.tls.source=letsEncrypt \

6 --set letsEncrypt.email=thomas.siwczak@gmail.com \
7 --set letsEncrypt.ingress.class=nginx \

8 --set ingress.tls.source=letsEncrypt \

9 --set replicas=1 \

10 --version=2.7.5 \

11 --set installCRDs=true

12

13 # Verify that the Rancher Server is Successfully Deployed
14 kubectl -n cattle-system rollout status deploy/rancher

15 kubectl -n cattle-system get deploy rancher

Set ingress.tls.source

For Let’s Encrypt - set Helm-Chart-Option:

‘ingress.tls.source=letsEncrypt®

2. WIP: Use Terraform and Ansible to setup
K8s

2.1. Setup Terraform backend in gitlab

coming soon

2.2. Create Terraform project

coming soon

2.3. Create Ansible Playbook

coming soon

2.4. Deploy are full featured k8s cluster for running
micro services

2.4.1. Install Helm
Install Helm (noch nicht optimal)

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

2.4.2. Install Argocd

Create namespace "argocd"

kubectl create ns argocd

Apply argocd install.yaml

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Download argocd-cli with curl

curl -LO https://github.com/argoproj/argo-cd/releases/download/v2.10.0/argocd-1linux-
armoe4

Install argocd-cli as "argocd”

sudo install -m 555 argocd-linux-arm64 /usr/local/bin/argocd

Patch argocd service to NodePort

kubectl patch svc argocd-server -n argocd -p '{"spec": {"type": "NodePort"}}'

Request the https nodePort port number

kubectl get svc argocd-server -n argocd -o jsonpath="{.spec.ports[1].nodePort}"

Get Initial-Admin-Password with kubectl

kubectl -n argocd get secret argocd-initial-admin-secret -o
jsonpath="{.data.password}" | base64 -d

Get Initial-Admin-Password with argocd-cli

argocd admin initial-password -n argocd

Login in argocd server with cli

argocd login <server-ip>:<nodePort>

Update Admin password with argocd-cli

argocd account update-password

Create Cluster

kubectl config get-contexts -o name
argocd cluster add <context-name>

3. Einstieg in DevOps

3.1. Einleitung

DevOps ist ein Begriff, der in der Softwareentwicklung immer mehr an Bedeutung gewinnt. Es
handelt sich um eine Kultur, Methodik und einen Satz von Werkzeugen, die darauf abzielen, die
Zusammenarbeit und Integration zwischen Entwicklungsteams (Dev) und Betriebsteams (Ops) zu
verbessern. In diesem Blogpost werden wir uns ndher mit dem Einstieg in DevOps beschéftigen
und Schritte aufzeigen, wie Sie diese Praktiken erfolgreich implementieren konnen.

3.2. Was ist DevOps?

DevOps ist eine Philosophie, die auf der Idee basiert, dass Entwicklung und Betrieb nicht als
getrennte Bereiche betrachtet werden sollten. Stattdessen sollten sie eng zusammenarbeiten, um
Software effizienter bereitzustellen und kontinuierlich zu verbessern. DevOps fordert eine Kultur
der Zusammenarbeit, Automatisierung und kontinuierlichen Uberpriifung, um die Bereitstellung
von Software schneller und stabiler zu machen.

3.3. Die Vorteile von DevOps

Die Einfiihrung von DevOps bietet eine Vielzahl von Vorteilen fir Organisationen. Einige der
wichtigsten sind:

1. Schnellere Bereitstellung: DevOps ermoglicht es Teams, Software schneller zu entwickeln und
bereitzustellen. Durch die Automatisierung von Prozessen und die enge Zusammenarbeit
zwischen Entwicklung und Betrieb konnen Softwarednderungen schnell getestet und
implementiert werden.

2. Hohere Qualitit: Durch kontinuierliche Integration, automatisierte Tests und kontinuierliches
Deployment konnen potenzielle Fehler frithzeitig erkannt und behoben werden. Dies fihrt zu
einer insgesamt hoheren Softwarequalitat.

3. Bessere Zusammenarbeit: DevOps fordert eine Kultur der Zusammenarbeit und
Kommunikation zwischen Entwicklung und Betrieb. Durch den gemeinsamen Fokus auf die
Bereitstellung von hochwertiger Software konnen Konflikte minimiert und die Produktivitat
gesteigert werden.

4. Skalierbarkeit: DevOps ermdglicht es Organisationen, schnell auf sich &ndernde Anforderungen
und Kundenbedirfnisse zu reagieren. Durch die Automatisierung von Prozessen konnen Teams
effizienter arbeiten und Softwarelosungen skalieren.

3.4. Der Einstieg in DevOps

Der Einstieg in DevOps erfordert eine schrittweise Herangehensweise und eine klare Strategie. Hier
sind einige wichtige Schritte, die Sie berticksichtigen sollten:

3.4.1. Verstandnis der DevOps-Prinzipien

Bevor Sie mit der Implementierung von DevOps beginnen, ist es wichtig, die zugrunde liegenden
Prinzipien und Best Practices zu verstehen. Dazu gehdren Kkontinuierliche Integration,
kontinuierliches Deployment, Automatisierung, Testautomatisierung und Kkontinuierliches
Monitoring. Informieren Sie sich tber diese Konzepte und ihre Auswirkungen auf die
Softwareentwicklung.

3.4.2. Schaffen Sie eine Kultur der Zusammenarbeit

DevOps erfordert eine enge Zusammenarbeit zwischen Entwicklungsteams, Betriebsteams und
anderen relevanten Abteilungen. Schaffen Sie eine Kultur, die auf offener Kommunikation,
Vertrauen und gemeinsamer Verantwortung basiert. Fordern Sie den Austausch von Wissen und
Ideen zwischen den Teams und schaffen Sie Moglichkeiten fiir regelméfiige Meetings und
Zusammenarbeit.

3.4.3. Automatisierung der Bereitstellung

Die Automatisierung spielt eine entscheidende Rolle in DevOps. Automatisieren Sie so viele
Prozesse wie moglich, um die Effizienz und Geschwindigkeit der Bereitstellung von Software zu
erhohen. Automatisieren Sie beispielsweise den Build-Prozess, die Tests, das Deployment und das
Monitoring. Verwenden Sie Werkzeuge wie Jenkins, Ansible oder Docker, um diese Aufgaben zu
automatisieren.

3.4.4. Einsatz von Continuous Integration und Continuous Deployment

Die kontinuierliche Integration und das kontinuierliche Deployment sind Kernprinzipien von
DevOps. Implementieren Sie eine Pipeline fiir die kontinuierliche Integration, um sicherzustellen,
dass Codednderungen regelméafdig und automatisch getestet werden. Verwenden Sie Tools wie Git,
Jenkins und SonarQube, um den Prozess der kontinuierlichen Integration zu unterstiitzen. Fur das
kontinuierliche Deployment verwenden Sie Werkzeuge wie Kubernetes oder AWS Elastic Beanstalk,
um die Software nahtlos und automatisch in die Produktionsumgebung zu tbertragen.

3.4.5. Uberwachung und Feedback

Eine kontinuierliche Uberwachung ist unerldsslich, um die Leistung und Stabilitit Ihrer
Anwendungen zu gewadhrleisten. Implementieren Sie ein effektives Monitoring-System, das
wichtige Metriken und Alarme erfasst. Verwenden Sie Werkzeuge wie Nagios, Grafana oder ELK
Stack, um den Zustand Ihrer Anwendungen und Infrastruktur zu tiberwachen. Nutzen Sie das
Feedback aus der Uberwachung, um Verbesserungen vorzunehmen und Engpésse zu identifizieren.

3.4.6. Kontinuierliche Verbesserung

DevOps ist ein kontinuierlicher Prozess. Stellen Sie sicher, dass Sie regelmafiige Reviews und
Retrospektiven durchfiihren, um den Fortschritt zu bewerten und Verbesserungspotenziale zu
identifizieren. Nutzen Sie die gewonnenen Erkenntnisse, um den DevOps-Prozess weiter zu
optimieren und effizienter zu gestalten.

3.5. Fazit

Der Einstieg in DevOps erfordert ein klares Verstdndnis der zugrunde liegenden Prinzipien und
Best Practices sowie eine schrittweise Umsetzung. Durch die Schaffung einer Kultur der
Zusammenarbeit, die Automatisierung von Prozessen und die kontinuierliche Integration und
Bereitstellung konnen Organisationen die Vorteile von DevOps nutzen. Mit der richtigen Strategie
und den geeigneten Tools kdnnen Sie Thre Softwareentwicklung und Bereitstellung optimieren und
qualitativ hochwertige Software effizienter liefern.

Beginnen Sie noch heute Ihren DevOps-Weg und erleben Sie die positiven Auswirkungen auf Thre
Organisation!

10

4. Kaniko

Einleitung, Anleitung und Beispiele

Kaniko

Kaniko ist ein Open-Source-Tool, entwickelt von Google, das zum Bauen von Docker-Images
innerhalb eines Kubernetes-Clusters oder einer anderen Umgebung ohne Docker Daemon
verwendet wird. Es ermoglicht eine sichere und effiziente Erstellung von Container-Images direkt
aus dem Quellcode.

4.1. Einleitung

4.2. Wie verwendet man Kaniko?

Um Kaniko zu nutzen, benétigen Sie zunachst eine Kubernetes-Umgebung. Sie konnen dann ein
kaniko Pod in Threm Cluster starten, der auf Ihren Dockerfile zeigt und ein Image in Ihrer
gewunschten Registry erstellt.

4.2.1. Schritte zur Verwendung von Kaniko

1. Installieren Sie Kaniko in Ihrem Kubernetes-Cluster:

kubectl create -f
https://qgithub.com/GoogleContainerTools/kaniko/blob/master/deploy/Dockerfile

1. Erstellen Sie eine geheime Datei fiir Ihre Registry:

kubectl create secret docker-registry regcred --docker-server=<your-registry-server>
--docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-
email>

1. Verwenden Sie einen kaniko Pod, um Ihr Image zu erstellen:

apiVersion: v
kind: Pod

11

metadata:
name: kaniko
spec:
containers:
- name: kaniko
image: gcr.io/kaniko-project/executor:latest
args: ["--dockerfile=/Dockerfile",
"--context=dir://<your-source-code>",
"--destination=<your-registry>/<your-image>:<your-tag>"]
volumeMounts:
- name: kaniko-secret
mountPath: /secret
readOnly: true
env:
- name: GOOGLE_APPLICATION_CREDENTIALS
value: /secret/kaniko-secret.json
restartPolicy: Never
volumes:
- name: kaniko-secret
secret:
secretName: kaniko-secret

4.3. Beispiele

Nun, da Sie eine Vorstellung davon haben, wie man Kaniko verwendet, finden Sie hier einige
Anwendungsfille:

1. Erstellen eines Python-Images: Wenn Sie einen Dockerfile haben, der auf ein Python-Image
zeigt und Anforderungen aus einer requirements.txt-Datei installiert, konnen Sie Kaniko
verwenden, um dieses Image effizient zu erstellen und es in Ihrer Registry bereitzustellen.

2. Erstellen eines Java-Images: Ahnlich wie beim Python-Beispiel kénnen Sie einen Dockerfile
verwenden, der auf ein Java-Image zeigt und Ihre .jar-Datei in das Image kopiert. Kaniko kann
dann verwendet werden, um dieses Image zu erstellen und es in Ihrer Registry bereitzustellen.

4.4. Links / Cheatsheets

* https://link.medium.com/jKNWyPVkwub

12

https://link.medium.com/jkNWyPVkwub

5. Packer.io

5.1. Was ist Packer.io?

Packer.io ist eine kostenlose Open-Source-Tool zur Erstellung identischer Maschinenbilder fiir
mehrere Plattformen aus einer einzigen Quellkonfiguration. Es wird von HashiCorp entwickelt,
einem Unternehmen, das fir die Entwicklung von Tools wie Vagrant, Terraform und Consul
bekannt ist. Packer.io ist in der Programmiersprache Go geschrieben und kann auf mehreren
Plattformen wie Linux, Windows und Mac OS X laufen.

5.2. Warum Packer.io verwenden?

Es gibt viele Grinde, warum Entwickler und Systemadministratoren Packer.io verwenden. Einige
davon sind:

* Konsistenz: Mit Packer.io konnen Sie Maschinenbilder erstellen, die auf allen Ihren Servern
gleich sind. Dies verringert das Risiko von Fehlern und Vereinfacht die Fehlersuche.

» Zeitersparnis: Mit Packer.io konnen Sie Maschinenbilder automatisch erstellen, ohne dass ein
manueller Eingriff erforderlich ist. Das bedeutet, dass Sie weniger Zeit mit der Konfiguration
von Servern verbringen und mehr Zeit fiir andere Aufgaben haben.

* Plattformunabhingigkeit: Packer.io unterstiitzt eine Vielzahl von Plattformen, darunter
Amazon EC2, Google Cloud, Microsoft Azure, VMware, Docker und viele mehr. Sie kénnen also
dasselbe Tool verwenden, unabhéangig davon, wo Ihre Server laufen.

5.3. Wie funktioniert Packer.io?

Packer.io verwendet Konfigurationsdateien, die in JSON geschrieben sind. In diesen Dateien
definieren Sie, welche Art von Maschinenbild Sie erstellen mochten, welche Software darauf
installiert sein soll und wie das Bild konfiguriert werden soll.

Sobald Sie Ihre Konfigurationsdatei erstellt haben, verwenden Sie das Befehlszeilen-Interface von

13

Packer.io, um das Maschinenbild zu erstellen. Packer.io fithrt dann eine Reihe von Schritten aus,
die als "Provisioner" und "Post-Prozessoren" bezeichnet werden, um das Maschinenbild zu erstellen
und zu konfigurieren.

5.4. Fazit

Packer.io ist ein leistungsfahiges Tool, das Ihnen hilft, konsistente und zuverlassige
Serverumgebungen zu erstellen. Mit seiner Unterstiitzung fiir eine Vielzahl von Plattformen und
seinem flexiblen Konfigurationssystem ist Packer.io ein unverzichtbares Tool fir jeden, der mit
Serverinfrastruktur arbeitet.

14

6. Skopeo

Arbeiten mit Remote-Images

Skopeo ist ein Befehlszeilen-Tool, das entwickelt wurde, um mit Container-Images und Image-
Repositories zu interagieren. Es ermoglicht Benutzern, Images von Containerregistern
herunterzuladen, Informationen tiber Images zu erhalten, Images zwischen Registern und lokalen
Speichern zu verschieben und vieles mehr.

6.1. Hauptmerkmale von Skopeo

* Breite Plattformunterstiitzung: Skopeo unterstiitzt eine Vielzahl von Containern und Image-
Speicher, einschliefSlich Docker, OpenShift und mehr.

* Inspektion von Images: Skopeo kann detaillierte Informationen tiber ein Image ohne dessen
Herunterladen oder Ausfiihrung liefern.

* Kopieren und Synchronisieren von Images: Skopeo kann Images zwischen verschiedenen
Registern und lokalen Speichern kopieren und synchronisieren.

6.2. Skopeo installieren und verwenden
Abhéngig von deinem Betriebssystem, kann Skopeo wie folgt installiert werden:
Ubuntu und andere Linux-Distributionen: sudo apt-get install skopeo
Fedora: sudo dnf install skopeo

Nach der Installation kannst du Skopeo verwenden, um mit Container-Images zu arbeiten. Hier
sind einige grundlegende Befehle und Beispiele:

6.2.1. Images inspizieren

Um Informationen tiber ein Image zu erhalten, verwenden Sie den inspect Befehl. Zum Beispiel:

$ skopeo inspect docker://docker.io/fedora

6.2.2. Images kopieren

Um ein Image von einem Register zu einem anderen zu kopieren, verwenden Sie den copy Befehl.
Zum Beispiel:

$ skopeo copy docker://myregistry.com/myimage:latest
docker://myotherregistry.com/myimage:latest

Bitte beachte, dass Skopeo verschiedene Authentifizierungsoptionen fiir den Zugriff auf private
Register unterstiitzt. Weitere Informationen finden Sie in der Skopeo-Dokumentation.

15

Mit diesen grundlegenden Befehlen und Konzepten bist du in der Lage, effektiv mit Skopeo zu
arbeiten und deine Arbeit mit Container-Images zu optimieren.

16

7. Terraform
HashiCorp

W Terraform

Terraform ist ein Open-Source-Tool, entwickelt von HashiCorp, das dazu dient, Infrastruktur als
Code (IaC) zu definieren und bereitzustellen. Es ermdoglicht Benutzern, ihre gesamte Infrastruktur
(einschlieRlich Netzwerk, Storage, Server usw.) in Code zu definieren, der in einer
Versionskontrolle gespeichert werden kann. Dieser Code kann dann verwendet werden, um die
Infrastruktur auf verschiedenen Plattformen zu erstellen und zu aktualisieren.

7.1. Welche Probleme werden damit gelost?

Terraform 16st eine Reihe von Problemen im Bereich Infrastrukturmanagement:

1. Standardisierung und Wiederverwendbarkeit: Durch das Schreiben von Infrastruktur als
Code konnen Teams ihre Setup-Prozesse standardisieren und Codeblocke wiederverwenden,
was zu einer effizienteren und konsistenteren Bereitstellung fiihrt.

2. Multi-Cloud-Deployments: Terraform unterstiitzt eine Vielzahl von Service-Providern und
ermoglicht es Benutzern, ihre Infrastruktur tber mehrere Cloud-Plattformen hinweg zu
verwalten.

3. Vereinfachte Anderungssteuerung: Mit Terraform kénnen Anderungen an der Infrastruktur
vor der Anwendung visualisiert und Uberpriift werden, was das Risiko von Ausfédllen reduziert.

7.2. How to use it

Terraform verwendet eine eigene Domain Specific Language (DSL) namens HashiCorp
Configuration Language (HCL), um Infrastruktur als Code zu definieren. Terraform-Prozesse
werden im Allgemeinen in vier Schritten durchgefihrt:

Schreiben Sie den Infrastrukturcode in HCL und speichern Sie ihn in . tf-Dateien.

* Fihren Sie terraform init aus, um das Terraform-Projekt zu initialisieren und die benotigten
Provider-Plugins herunterzuladen.

* Fiihren Sie terraform plan aus, um die Anderungen zu sehen, die auf der Infrastruktur
vorgenommen werden.

+ Fithren Sie terraform apply aus, um die Anderungen anzuwenden.

7.3. Beispielcodes

Ein einfacher Terraform-Code zum Erstellen einer AWS EC2-Instanz konnte folgendermafien
aussehen:

provider "aws" {

17

region = "us-west-2"

}

mn

resource "aws_instance" "example" {
ami = "ami-0c94855ba95¢c574c8"
instance_type = "t2.micro"

tags = {
Name =
}
}

"example-instance"

Nach dem Schreiben dieses Codes in einer .tf-Datei wirden Sie terraform init, terraform plan und
terraform apply in Ihrer Befehlszeile ausfiihren, um die Instanz zu erstellen.

7.4. Terraform Komponenten

7.4.1. Terraform Core

Terraform Core ist die primdre Komponente von Terraform und verantwortlich fiir das Lesen und
Interpretieren der Terraform-Konfigurationen (in .tf Dateien), Erstellen und Verwalten des
Zustands der Ressourcen, und Aufrufen von entsprechenden Anbietern, um diese Ressourcen zu
erstellen und zu dndern.

7.4.2. Terraform CLI (Command Line Interface)

Terraform CLI ist das primére Benutzerinterface fiir Terraform. Es bietet Befehle zum Verwalten
und Interagieren mit Terraform-Konfigurationen, Zustand und Modulen.

7.4.3. Terraform Provider

Provider sind Plugins, die von Terraform genutzt werden, um mit verschiedenen Diensten zu
interagieren. Sie definieren und bieten Ressourcen an, die in Terraform-Konfigurationen erstellt
und verwaltet werden konnen. Einige Beispiele fiir Provider sind AWS, Google Cloud, Azure, usw.

7.4.4. Terraform Modules

Module sind selbststdndige Pakete von Terraform-Konfigurationen, die als Einheiten
wiederverwendet werden konnen. Sie konnen Ressourcen enthalten, Variablen definieren und
Ausgaben produzieren.

7.4.5. Terraform State

Der Terraform-Zustand ist eine wichtige Komponente, die Terraform verwendet, um den aktuellen
Zustand der in den Terraform-Konfigurationen definierten Ressourcen zu verfolgen.

18

7.4.6. Terraform Backends

Backends sind Komponenten, die zum Speichern des Terraform-Zustands und zur Durchfiihrung
von Operationen verwendet werden. Sie ermoglichen Funktionen wie Zustandsspeicherung,
Zustandsverriegelung und Umgebungssteuerung.

7.5. Erstellung eines Terraform-Moduls

Zuerst, erstellen Sie ein neues Verzeichnis, das IThr Modul enthalten wird. Zum Beispiel, my_module.
$ mkdir my_module

Als néchstes, erstellen Sie eine Terraform-Konfigurationsdatei innerhalb dieses Verzeichnisses.
Nennen wir sie main. tf.

variable "image_id" {
description = "Die ID des AMI"
}

variable "availability_zone_names" {
description = "Eine Liste der Verfiigharkeitszonen"

type = list(string)

ks

resource "aws_instance" "example" {
ami = var.image_id
instance_type = "t2.micro"

availability_zone = var.availability_zone_names[0]

}

output "instance_public_ip" {
value = aws_instance.example.public_ip

}

7.5.1. Benutzen eines Terraform-Moduls
Jetzt konnen wir dieses Modul in unserer Haupt-Terraform-Konfiguration verwenden. Hier ist ein

Beispiel, wie das aussehen konnte:

module "example_module" {
source = "./my_module"

image_id = "ami-abc123"

availability_zone_names = ["us-west-2a", "us-west-2b"]

}

19

Jetzt konnen Sie terraform init und terraform apply ausfiihren, um das Modul in Aktion zu sehen.

7.6. Datel auf einen Server kopieren mit Terraform

Um eine Datei auf einen Server zu kopieren, kannst du den "file" oder den "template_file" Provider
von Terraform verwenden. Du musst den Inhalt der Datei bereitstellen und die Datei in deiner
Terraform-Konfiguration erstellen.

Hier ist ein Beispiel, wie du eine Datei in Terraform erstellst:

Beispiel: Datei mit dem Inhalt "Hallo, Welt!"
resource "null resource" "
provisioner "file" {
content = "Hallo, Welt!"
destination = "/pfad/zu/deiner/datei.txt"

example" {

connection {

type = "ssh"
user = "username"
password = "password"
host = self.public_ip
}
}

In diesem Beispiel wird eine Datei mit dem Inhalt "Hallo, Welt!" an den angegebenen Pfad auf dem
Server kopiert.

Arbeiten mit Passwortern in Klartext ist ein Sicherheitsrisiko. Du solltest sichere Methoden
zum Umgang mit Passwortern verwenden, wie z.B. das Einlesen aus sicheren Speichern oder
die Verwendung von SSH-Schliisseln anstelle von Passwortern.

Zusatzlich muss das Ziel-Server Terraform unterstiitzen und SSH-Zugriff ermdoglichen. Du solltest
sicherstellen, dass der Pfad zur Datei auf dem Zielserver existiert und schreibbar ist.

Falls du eine existierende Datei kopieren mochtest, kannst du die source Eigenschaft anstelle von
content verwenden. Zum Beispiel:

Beispiel mit bereits vorhandener Datei
resource "null resource" "

provisioner "file" {
source = "/pfad/zu/1lokal/datei.txt"
destination = "/pfad/zu/ziel/datei.txt"

example" {

connection {
type = "ssh"

20

user = "username"
password = "password"
host = self.public_ip

Hierbei wird eine lokale Datei auf deinem Rechner an den angegebenen Pfad auf dem Server
kopiert.

Ein weiteres Beispiel unter Verwendung von einem SSH-Key

resource "null_resource" "example" {
provisioner "file" {
content = "Hallo, Welt!"

destination = "/pfad/zu/deiner/datei.txt"

connection {

type = "ssh"

user = "username"
private_key = file("~/.ssh/id_rsa")
host = self.public_ip

Das Terraform-Verhalten kann sich abhdngig von der spezifischen Serverkonfiguration und
den verwendeten Terraform-Provisionern dndern. Dieses Beispiel konnte angepasst werden
mussen, um in deiner spezifischen Umgebung zu funktionieren.

7.7. Vor- und Nachteile von Terraform

Wie jedes Tool hat auch Terraform seine Vor- und Nachteile:
Vorteile

* Provider-ubergreifend: Terraform unterstiitzt eine Vielzahl von Providern, sowohl Cloud als
auch On-Premises.

 Immutable Infrastructure: Terraform erstellt und verwaltet Ressourcen auf eine Weise, die
Anderungen an der bestehenden Infrastruktur minimiert.

* Einfach zu lernen: HCL ist eine recht einfache und lesbare Sprache.
Nachteile

* Fehler konnen schwerwiegend sein: Ein Fehler in IThrem Terraform-Code kann zu grofien
Problemen in Ihrer Infrastruktur fithren.

21

* Komplexitidt bei grofien Setups: Wahrend Terraform bei kleineren Projekten einfach zu
verwenden ist, kann es bei groflen und komplexen Setups schwierig sein, den Uberblick zu
behalten.

* Fehlende Unterstiitzung fiir bestimmte Ressourcen: Wihrend Terraform viele Provider
unterstiitzt, gibt es immer noch Ressourcen und Dienste, die nicht unterstiitzt werden.

* Keine Multiuser/Platform unterstiitzung: Per default werden die "state" - Files lokal abgelegt.
Dadurch ist es nicht einfach so méglich, Anderungen von einem anderen Rechner oder
anderem User durchzufiithren. Hierzu missen "backends" fiir die Provider definiert werden.
Mogliche Backends sind Cloud-Speicher bei: Amazon, Google, Azure oder ein Cloud-Dienst von
HashiCorp (Terraform). Eine weitere Alternative ist die Nutzung von GitLab als backend - mehr
dazu im néchsten Kapitel.

7.8. Zusammenfassung

Abschliefiend ist Terraform ein leistungsstarkes Tool zur Verwaltung Ihrer Infrastruktur als Code.
Mit seiner Fahigkeit, eine breite Palette von Anbietern zu unterstiitzen und den
Infrastrukturprozess zu standardisieren, ist es ein unverzichtbares Tool in der modernen DevOps-
Werkzeugkette. Es ist jedoch wichtig, sorgfaltig mit Terraform umzugehen, um maogliche Fehler zu
vermeiden, die Auswirkungen auf die Produktionsinfrastruktur haben kénnten.

7.9. Links / Cheatsheet

* Introducing Terramate — An Orchestrator and Code Generator for Terraform

7.10. GitLab als Terraform Backend

coming soon

* A complete overview of GitLab managed terraform state

* How to run terraform script using GitLab CI/CD?

22

https://medium.com/mineiros/introducing-terramate-an-orchestrator-and-code-generator-for-terraform-5e538c9ee055
https://medium.com/@dksoni4530/a-complete-overview-of-gitlab-managed-terraform-state-b30114f84c27
https://medium.com/@dksoni4530/a-complete-overview-of-gitlab-managed-terraform-state-b30114f84c27
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232
https://medium.com/geekculture/how-to-run-terraform-script-using-gitlab-ci-cd-b6f448ab0232

8. ArgoCD

8.1. Welches Problem wird mit ArgoCD gelost?

Anwendungsdefinitionen, Konfigurationen und Umgebungen sollten deklarativ und versioniert
sein.

Die Anwendungsbereitstellung und das Lebenszyklusmanagement sollten automatisiert,
uberprifbar und leicht verstandlich sein.

8.2. Uberblick

Container

Image Registry Stagingsystem m .

Produktivsystem _@'_
Anwendungs N

Git Repository

Konfigurations
Git Repository

8.3. Wie arbeitet ArgoCD?

* Deklarativ - beschreibt Zielbild, nicht den Weg
* Arbeitet mit Kubernetes und OpenShift
» Kann folgende Quellen verarbeiten:

o kubernetes manifests

o Helm Charts

o Kustomize resources

23

8.4. Ways to interact with ArgoCD

« Web GUI
« ArgoCD CLI

¢ Kubernetes Manifest files
8.5. Installation von ArgoCD

kubectl create namespace argocd
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Initiales Admin Password abfragen

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath
="{.data.password}" | base64 -d; echo

8.6. Webhook

* https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/

8.7. Sync-Waves

thd.

8.8. Bootstrap - Project

* https://github.com/argoproj/argocd-example-apps/tree/master/apps

* Automatically create multiple applications in Argo CD

8.9. High Availability

High Availability installation is recommended for production use. This bundle includes the
same components but tuned for high availability and resiliency.

* ha/install.yaml - the same as install.yaml but with multiple replicas for supported components.

* ha/namespace-install.yaml - the same as namespace-install.yaml but with multiple replicas for
supported components.

8.10. Manage multible Cluster

24

https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/
https://github.com/argoproj/argocd-example-apps/tree/master/apps
https://opensource.com/article/21/7/automating-argo-cd

8.11. Workflow Hardening

* Practical Argo Workflows Hardening

8.12. Disaster Recovery

* https://argo-cd.readthedocs.io/en/stable/operator-manual/disaster_recovery/

8.13. Bonus

* ArgoCD Custom Plugins - Creating a Custom Plugin to Process OpenShift Templates

¢ https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-
repo-0a406ff7c578

8.14. ArgoCD und DevOps

https://codefresh.io/blog/using-argo-cd-and-kustomize-for-configmap-rollouts

8.15. Links / Cheatsheet

» Solving ArgoCD Secret Management with the argocd-vault-plugin
» External HTTPS SSO Callback Ingress

* How to Deploy Argo CD Dashboard over Nginx Ingress-Controller

25

https://blog.argoproj.io/practical-argo-workflows-hardening-dd8429acc1ce
https://argo-cd.readthedocs.io/en/stable/operator-manual/disaster_recovery/
https://dev.to/tylerauerbeck/argocd-custom-plugins-creating-a-custom-plugin-to-process-openshift-templates-4p5m
https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-repo-0a406ff7c578
https://medium.com/@geoffrey.muselli/argocd-multi-cluster-helm-charts-installation-in-mono-repo-0a406ff7c578
https://codefresh.io/blog/using-argo-cd-and-kustomize-for-configmap-rollouts
https://itnext.io/argocd-secret-management-with-argocd-vault-plugin-539f104aff05
https://argo-cd.readthedocs.io/en/stable/operator-manual/ingress/#private-argo-cd-ui-with-multiple-ingress-objects-and-byo-certificate
https://arnavtripathy98.medium.com/solution-how-to-deploy-argo-cd-dashboard-over-nginx-ingress-controller-926d8a540844

9. GitLab Pipelines

©
@
©

COMMIT [UNIT TEST ’ REVIEW STAGING PRODUCTION
> |o o o 0-0-0 o o
- l { BUILD INTEGRATION TESTS

@ Cl PIPELINE CD PIPELINE

RELATED CODE

» vordefinierter Aktionen, die bei Events starten

* Beispiel: bei Commit startet Testaktion

9.1. Gitlab Runner

* Der Gitlab-CI-Server, auch Koordinator genannt, fiihrt selbst keine Builds aus, sonder delegiert
dies an sogenannte Runner.

* Ein Runner ist ein Prozess, der auf einem beliebigen Rechner laufen kann, und den Koordinator
pollt, um anstehende Jobs abzuholen und zu bearbeiten.

* Der Runner kann direkt installiert sein oder als Container gestartet werden.

e Gitlab Runner in Docker

9.2. Pipeline - Get started

* GitLab CI/CD Configfile .gitlab-ci.yml

stages:
- build
- test

build-code-job:
stage: build
script:
- ruby -v
- rake

test-code-job1:
stage: test
script:
- echo "If the files are built successfully, test:"

26

https://docs.gitlab.com/runner/install/docker.html

- rake test1

9.3. Pipeline - Stages

Build Test Deploy

build-job unit-test-job deploy-job

lint-test-job
Die "Stages" - Liste gruppiert die Jobs und definiert die Reihenfolge der Ausfiihrung.

stages:
- build
- test
- deploy

9.4. Pipeline - Jobs
Jobs sind der fundamentale Bestandteil von Pipelines

* in Jobs wird definiert, was ausgefiihrt werden soll
* mussen mindestens das Element "script" enthalten
* konnen beliebige Namen haben

* sind in der Anzahl nicht begrenzt

* max execution time = 60min per job
9.5. Pipeline - Job example

node-lint:

image: $NODE_BASE_IMAGE
stage: test
script:

- mkdir output

- cd app

- npm install --silent

- npx eslint ./ --fix -f html -o ../output/lint-report.html
artifacts:

paths:

- output/lint-report.html

27

9.6. Links to follow

https://hilfe.uni-paderborn.de/GitLab_-_CI/CD

28

https://hilfe.uni-paderborn.de/GitLab_-_CI/CD

10. Gitlab pipelines in advanced

Um eine GitLab-Pipeline zu erstellen, die mit mehreren Projekten arbeitet, konnen Sie die
folgenden Schritte befolgen:

10.1. Projektiibergreifende Pipelines definieren

Sie konnen in GitLab projektiibergreifende Pipelines definieren, indem Sie die trigger-Anweisung
in Ihrer .gitlab-ci.yml-Datei verwenden. Diese ermdglicht es einem Projekt, eine Pipeline in einem
anderen Projekt auszulosen.

10.2. GitLab CI/CD-Konfigurationsdatei erstellen

In jedem beteiligten Projekt bendétigen Sie eine .gitlab-ci.yml-Datei, die die Pipeline definiert.
Diese Datei legt die Jobs und Stufen fest, die in der Pipeline ausgefiihrt werden sollen.

10.3. Trigger einrichten

In der .gitlab-ci.yml des auslosenden Projekts verwenden Sie die trigger-Anweisung, um die
Pipeline eines anderen Projekts zu starten. Sie konnen beispielsweise angeben, welche spezifische
Pipeline eines anderen Projekts gestartet werden soll und unter welchen Bedingungen dies
geschehen soll.

10.4. Abhangigkeiten zwischen Projekten verwalten

Wenn Ihre Projekte voneinander abhdngig sind, z. B. wenn ein Projekt ein Artefakt erstellt, das von
einem anderen Projekt verwendet wird, miussen Sie diese Abhédngigkeiten in Ihren Pipelines
entsprechend verwalten. Dies kann durch das Ubergeben von Artefakten zwischen Pipelines oder
durch die Verwendung von gemeinsamen Speicherorten wie einem Artefakt-Repository erfolgen.

10.5. Zugriffsrechte konfigurieren

Stellen Sie sicher, dass die Projekte die erforderlichen Berechtigungen haben, um Pipelines in
anderen Projekten auszulosen. Dies kann Zugriffstoken oder spezielle
Berechtigungskonfigurationen umfassen.

10.6. Pipeline-Status iilberwachen und debuggen

Nachdem Sie die Pipelines eingerichtet haben, sollten Sie den Fortschritt tuberwachen und
eventuelle Probleme debuggen. GitLab bietet eine visuelle Darstellung des Pipeline-Status, sowie
detaillierte Logs flr jeden Job.

Beachten Sie, dass die genaue Konfiguration von Ihrem spezifischen Anwendungsfall und der
Struktur Ihrer Projekte abhdngt. Die GitLab-Dokumentation bietet detaillierte Anleitungen und
Beispiele, die IThnen helfen konnen, Ihre Pipeline-Konfiguration zu optimieren.

29

10.7. Beispiel fur projektiibergreifende Pipelines

Hier ist ein einfaches Beispiel, wie man eine GitLab-CI-Pipeline konfigurieren kann, die mit
mehreren Projekten arbeitet:

10.7.1. Projekt A: Hauptprojekt
Stellen Sie sich vor, Projekt A ist Ihr Hauptprojekt, das eine Pipeline in Projekt B auslost.

gitlab-ci.yml in Projekt A

1

2

3

4

5 build_job:
6 stage: build

7 script:

8 - echo "Building Project A..."
9

10 trigger_project_b:

11 stage: trigger

12 script:

13 - echo "Triggering pipeline in Project B..."
14 trigger:

15 project: your-group/project-b

16 branch: master

In diesem Beispiel gibt es zwei Stufen: build und trigger. Der build_job fiihrt einen einfachen
Befehl aus (z.B. den Build-Prozess), und trigger_project_b 16st eine Pipeline im Projekt B aus.

10.7.2. Projekt B: Abhédngiges Projekt
Projekt B konnte ein abhéngiges Projekt sein, das durch Projekt A ausgeldst wird.

gitlab-ci.yml in Projekt B

1 stages:

2 - test

3

4 test_job:

5 stage: test

6 script:

7 - echo "Testing Project B..."

In Projekt B gibt es eine einfache Pipeline mit einer Teststufe. Diese Pipeline wird ausgelost, sobald
die trigger_project_b-Stufe in Projekt A erfolgreich abgeschlossen ist.

30

10.7.3. Hinweise

* Ersetzen Sie your-group/project-b mit dem tatsachlichen Pfad Ihres Projekts B in GitLab.

* Stellen Sie sicher, dass fir das Projekt, das die Pipeline eines anderen Projekts auslost, die
entsprechenden Zugriffsrechte eingerichtet sind. Eventuell bendtigen Sie ein [CI/CD-
Token](https://docs.gitlab.com/ee/ci/triggers/#adding-a-new-trigger).

* Dieses Beispiel ist grundlegend. Je nach Anforderungen Ihres Projekts konnen Sie komplexere
Pipelines mit weiteren Stufen, Jobs und Bedingungen einrichten.

Diese Konfiguration ermdoglicht eine einfache Interaktion zwischen zwei Projekten, wobei das eine
Projekt (Projekt A) eine Aktion in einem anderen Projekt (Projekt B) auslost.

31

https://docs.gitlab.com/ee/ci/triggers/#adding-a-new-trigger

11. Jenkins

Ein Uberblick

11.1. Einfihrung

Jenkins ist ein freies Open Source Automatisierungstool, das hauptsachlich mit Java entwickelt
wurde. Es dient zur kontinuierlichen Integration und kontinuierlichen Bereitstellung (CI/CD) von
Projekten.

11.2. Hauptmerkmale von Jenkins

Jenkins bietet zahlreiche Funktionen, die seine Verwendung fir DevOps und CI/CD-Prozesse
attraktiv machen:

 Einfache Installation: Jenkins ist ein selbststdndiges Java-Programm, das direkt aus dem Paket
auf jedem System ausgefiihrt werden kann, auf dem Java installiert ist.

* Plugin-Okosystem: Es gibt Tausende von Jenkins-Plugins, die Integrationen mit fast jedem Tool
im DevOps-Lebenszyklus ermdoglichen.

 Skalierbarkeit: Jenkins kann horizontal und vertikal skaliert werden, um den Anforderungen
grofser und komplexer Projekte gerecht zu werden.

* Pipeline als Code: Jenkins ermoglicht es Benutzern, ihre CI/CD-Pipeline als Code zu definieren.
Dies verbessert die Wartbarkeit und Versionskontrolle der Pipeline.

11.3. Jenkins-Architektur

Jenkins folgt einer Master-Slave-Architektur, um den Arbeitslast auszugleichen:

* Master: Der Master koordiniert die Builds und verteilt die Aufgaben an die Slaves. Es speichert
auch Konfigurationsdetails und stellt die Benutzeroberfldche und die API bereit.

32

 Slaves: Die Slaves fiihren die Aufgaben aus, die ihnen vom Master zugewiesen wurden. Sie
konnen auf verschiedenen Betriebssystemen laufen und unterschiedliche
Hardwarekonfigurationen haben, je nach den Anforderungen der Builds.

11.4. Fazit

Jenkins ist ein duferst vielseitiges und leistungsfahiges Tool fiir die Automatisierung von DevOps-
Aufgaben. Sein grofes Plugin-Okosystem und seine Skalierbarkeit machen es zu einer
hervorragenden Wahl fiir Teams jeder Grofse.

11.5. Links / Cheatsheet

* Creating CI/CD Pipeline with Jenkins

33

https://medium.com/bitaksi-tech/creating-ci-cd-pipeline-with-jenkins-46ca03b4f84b

12. Tekton

Eine Einfiihrung, Anwendung und Analyse

12.1. Einfuhrung

Tekton ist ein leistungsstarkes und flexibles Open-Source-Framework fir die Erstellung von
Continuous Integration und Continuous Delivery (CI/CD) Systemen. Entwickelt, um Kubernetes
nativ zu sein, stellt Tekton eine Reihe von Kubernetes Custom Resource Definitions (CRDs) zur
Verfliigung, um Pipelines Zu erstellen, die passend zu den modernen
softwareentwicklungspraktiken sind.

12.2. Welche Probleme werden damit gelost?

Tekton 10st eine Reihe von Herausforderungen im Bereich der Softwarelieferung:
* Kompatibilitit: Da Tekton auf Kubernetes basiert, kann es auf jeder Plattform eingesetzt
werden, die Kubernetes unterstiitzt.

* Anpassbarkeit: Tekton ist hochgradig anpassbar und kann sich leicht an verschiedene CI/CD-
Workflows anpassen.

* Wiederverwendbarkeit: Tekton-Aufgaben sind modular und wiederverwendbar, was
bedeutet, dass Teams einmal erstellten Code in mehreren Pipelines verwenden kénnen.

12.3. Wie benutzt man Tekton?

Die Verwendung von Tekton beinhaltet im Wesentlichen das Definieren und Ausfiithren von Tasks
und Pipelines. Hier ist ein einfacher Ablauf zur Einrichtung eines Tekton-Workflows:

1. Installieren Sie Tekton auf Ihrem Kubernetes-Cluster.

2. Definieren Sie einen Task, der eine bestimmte Aufgabe ausfiihrt.

3. Definieren Sie eine Pipeline, die mehrere Tasks verbindet.

4. Erstellen Sie einen PipelineRun, um die Pipeline auszufiihren.

34

12.4. Beispielcodes

Hier ist ein einfacher Tekton Task, der ein Docker-Image erstellt:

apiVersion: tekton.dev/vibetal
kind: Task
metadata:
name: build-docker-image
spec:
steps:
- name: build-and-push
image: docker:17.12.0-ce
command: ["docker", "build", "-t", "my-image", "."]

12.5. Vor- und Nachteile

Wie jedes Tool hat auch Tekton seine Vor- und Nachteile:

12.5.1. Vorteile

 Flexibilitat: Tekton bietet eine hohe Flexibilitat bei der Gestaltung von CI/CD-Workflows.

* Wiederverwendbarkeit: Aufgaben in Tekton sind wiederverwendbar, was zur Effizienz der
Pipelines beitragt.

12.5.2. Nachteile

* Komplexitdat: Tekton kann fur Einsteiger komplex sein, besonders wenn man nicht mit
Kubernetes vertraut ist.

e Fehlende Benutzeroberflache: Tekton selbst hat keine Benutzeroberfliche, obwohl es
Drittanbieter-Optionen gibt.

Zusammenfassend lasst sich sagen, dass Tekton ein méachtiges Werkzeug fiir CI/CD-Pipelines ist, das
sich durch seine Flexibilitdit und Wiederverwendbarkeit auszeichnet. Es hat jedoch eine steile
Lernkurve und erfordert eine gute Kenntnis von Kubernetes.

12.6. Links

e Tekton CI/CD review

35

https://itnext.io/tekton-ci-cd-review-8a639181c820

13. Kubernetes

Kubernetes, ein weitverbreitetes System zur Orchestrierung von Containeranwendungen, besteht
aus verschiedenen Komponenten, die gemeinsam eine robuste und skalierbare Plattform bilden.
Hier sind die wichtigsten Komponenten:

13.1. Master-Knoten (Master Node)

Er steuert den Kubernetes-Cluster und besteht aus mehreren Teilen:
* API-Server (kube-apiserver):
Dient als Frontend fiir das Kubernetes-Steuerungsebenen-Netzwerk.

* Etcd:
Eine konsistente und hochverfiighare Schliisselwert-Datenbank, die als Kubernetes’ Backing-
Store fur alle Clusterdaten genutzt wird.

* Scheduler (kube-scheduler):
Entscheidet, auf welchem Knoten neu erstellte Container platziert werden.

» Controller-Manager (kube-controller-manager):
Verwaltet die Controller, die den Zustand des Clusters iiberwachen und bei Bedarf Anderungen
vornehmen.

13.2. Arbeitsknoten (Worker Nodes):

Diese Knoten fiihren die Containeranwendungen aus. Sie enthalten:

* Kubelet: Eine Agent-Anwendung, die sicherstellt, dass die Container in einem Pod laufen.

* Kube-Proxy: Ein Netzwerk-Proxy, der die Kubernetes-Netzwerkdienste auf dem Arbeitsknoten
verwaltet.

e Container-Runtime: Die Software, die fiir das Ausfiihren von Containern verantwortlich ist
(z.B. Docker, containerd).

13.3. Pods

Die kleinste Einheit, die in Kubernetes erstellt und verwaltet wird. Ein Pod ist eine Gruppe von
einem oder mehreren Containern, die Ressourcen wie Netzwerk und Speicherplatz teilen.

13.4. Deployment und ReplicaSets

Diese Komponenten ermoglichen es Ihnen, den gewtnschten Zustand Ihrer Anwendung zu
definieren und Kubernetes kiimmert sich um dessen Einhaltung.

13.5. Services

Eine Abstraktion, die einen logischen Satz von Pods definiert und eine Policy, um auf sie

36

zuzugreifen.

13.6. Namespaces

Erlauben die Unterteilung von Ressourcen in verschiedenen virtuellen Clustern im selben
physischen Cluster.

13.7. ConfigMaps und Secrets

Fur die Speicherung von Konfigurationsdaten und sensiblen Informationen, die von Pods genutzt
werden konnen.

Diese Komponenten arbeiten zusammen, um eine hochverfiighare, skalierbare und flexible
Umgebung fir das Ausfihren von containerisierten Anwendungen zu bieten. Kubernetes’
Architektur ermoglicht es, Anwendungen effizient und zuverlassig zu verwalten, zu skalieren und
zu verteilen.

13.8. Ingress / Egress

In Kubernetes und im Bereich der Netzwerkkommunikation beziehen sich die Begriffe "Ingress"
und "Egress" auf den Datenverkehr, der in das Netzwerk eintritt oder es verldsst. Hier sind die
Hauptunterschiede:

13.8.1. Ingress:

* Bedeutung:
Ingress bezieht sich auf den eingehenden Netzwerkverkehr. In einem Kubernetes-Kontext
bezeichnet es oft die Regeln und Mechanismen, die den Zugriff von aufien auf Dienste
innerhalb des Kubernetes-Clusters steuern.

* Verwendung in Kubernetes:
In Kubernetes ist ein Ingress eine API-Ressource, die den Zugriff auf HTTP- und HTTPS-Routen
von aufderhalb des Clusters zu den Services innerhalb des Clusters steuert. Es ermdglicht Ihnen,
Zugriffsregeln zu definieren, Hostnamen oder URL-Pfade auf bestimmte Services abzubilden
und sogar SSL/TLS-Zertifikate fir diese Endpunkte zu handhaben.

* Beispiel:
Ein Ingress konnte konfiguriert werden, um Anfragen an meine-website.example.com an einen
spezifischen Service in Threm Kubernetes-Cluster weiterzuleiten.

13.8.2. Egress:

* Bedeutung:
Egress bezieht sich auf den ausgehenden Netzwerkverkehr, also den Datenverkehr, der von
IThrem Netzwerk (z.B. einem Kubernetes-Cluster) zu einem externen Ziel fliefst.

* Verwendung in Kubernetes:
In Kubernetes kontrollieren Egress-Regeln, wie der ausgehende Verkehr von den Pods in einem
Cluster zu externen Diensten geleitet wird. Dies kann wichtig sein, um die Netzwerksicherheit

37

zu gewahrleisten oder um zu kontrollieren, wie Ressourcen aufierhalb des Clusters genutzt
werden.

* Beispiel:
Egress-Regeln konnten festlegen, dass bestimmte Pods Zugriff auf eine externe Datenbank oder
eine API im Internet haben, wiahrend anderer Verkehr blockiert wird.

In der Praxis sind Ingress- und Egress-Kontrollen wesentliche Bestandteile des
Netzwerkmanagements und der Sicherheit in Kubernetes, da sie detailliert steuern, wie der
Datenverkehr in und aus dem Cluster fliefst.

38

14. k9s

Kubernetes CLI To Manage Your Clusters

4
N

K9s is a terminal based UI to interact with your Kubernetes clusters. The aim of this project is to
make it easier to navigate, observe and manage your deployed applications in the wild. K9s
continually watches Kubernetes for changes and offers subsequent commands to interact with your
observed resources.

14.1. Installation

K9s is available on Linux, macOS and Windows platforms.

Binaries for Linux, Windows and Mac are available as tarballs in the release page.

14.2. Features

14.2.1. Information At Your Finger Tips!

» Tracks in real-time activities of resources running in your Kubernetes cluster.

14.2.2. Standard or CRD?

e Handles both Kubernetes standard resources as well as custom resource definitions.

14.2.3. Cluster Metrics

» Tracks real-time metrics associates with resources such as pods, containers and nodes.

14.2.4. Power Users Welcome!

* Provides standard cluster management commands such as logs, scaling, port-forwards,
restarts...

* Define your own command shortcuts for quick navigation via command aliases and hotkeys.

* Plugin support to extend K9s to create your very own cluster commands.

39

https://github.com/derailed/k9s/releases

» Powerful filtering mode to allow user to drill down and view workload related resources.

14.2.5. Error Zoom

* Drill down directly to what’s wrong with your cluster’s resources.

14.2.6. Skinnable and Customizable

* Define your very own look and feel via K9s skins.

* Customize/Arrange which columns to display on a per resource basis.

14.2.7. Narrow or Wide?

* Provides toggles to view minimal or full resource definitions

14.2.8. MultiResources Views

* Provides for an overview of your cluster resources via Pulses and XRay views.

14.2.9. We’ve got your RBAC!

» Supports for viewing RBAC rules such as cluster/roles and their associated bindings.

» Reverse lookup to asserts what a user/group or ServiceAccount can do on your clusters.

14.2.10. Built-in Benchmarking

* You can benchmark your HTTP services/pods directly from K9s to see how your application fare
and adjust your resources request/limit accordingly.

14.2.11. Resource Graph Traversals

* K9s provides for easy traversal of Kubernetes resources and their associated resources.

14.3. Links

* https://k9scli.io

40

https://k9scli.io

15. KURL

Open Source Kubernetes Installer
[kurl logo@2x] | https:/kurl.sh/kurl_logo@2x.png

"KURL - Kubernetes Installer" ist ein Tool, das zur Vereinfachung der Installation und Bereitstellung
von Kubernetes-Clustern entwickelt wurde. Es bietet eine automatisierte Methode, um Kubernetes
auf verschiedenen Plattformen einzurichten.

Die Verwendung von kURL erfolgt in mehreren Schritten:

15.1. Vorbereitung der Infrastruktur

Stellen Sie sicher, dass die Infrastruktur fiir IThren Kubernetes-Cluster bereit ist. Dies umfasst das
Einrichten von Servern oder virtuellen Maschinen, auf denen Kubernetes installiert werden soll.

15.2. Herunterladen von kURL

Laden Sie das KURL-Installationsprogramm herunter. Dieses Programm enthélt die erforderlichen
Skripte und Konfigurationsdateien, um die Kubernetes-Installation durchzufiithren.

Zusatzlich besteht die Moglichkeit, nicht nur die Scripte, sondern auch alle bendtigten Resourcen,
in eine tar-File herunter zu laden. Damit ist dann auch eine einfache Installetion in einer Airgap-
Umgebung moglich.

15.3. Konfiguration

Passen Sie die Konfigurationsdateien an Ihre spezifischen Anforderungen an. Dies umfasst die
Festlegung von Netzwerkeinstellungen, Authentifizierungsoptionen, Speicheroptionen usw.

15.4. Installation

Fihren Sie das KkURL-Installationsprogramm aus und geben Sie die angepassten
Konfigurationsdateien an. Das Installationsprogramm fiihrt dann den Prozess der Kubernetes-
Installation durch, einschliefdlich der Installation von Docker, der Einrichtung des Kubernetes-
Master-Knotens und der Bereitstellung der Worker-Knoten.

15.5. Uberpriifung

Nach Abschluss der Installation konnen Sie den Status des Kubernetes-Clusters tiberpriifen, um
sicherzustellen, dass alles korrekt eingerichtet wurde. Dies umfasst die Uberpriifung der
Verfugbarkeit der Kubernetes-API und das Testen der Kommunikation zwischen den Clusterknoten.

41

15.6. Fazit

KURL ist ein flexibles Tool, das auf verschiedene Szenarien und Plattformen zugeschnitten werden
kann. Es ermoglicht eine schnelle und effiziente Installation von Kubernetes-Clustern mit einem
standardisierten Ansatz. Nicht zuletzt bietet es eine einfache Maoglichkeit fir Installationen in
Airgap-Umgebungen.

15.7. Links

* https://kurl.sh

42

https://kurl.sh

16. Podman

16.1. Einleitung

Podman ist ein Tool zur Containerverwaltung, das von Red Hat entwickelt wurde und als
Alternative zu Docker dient.

16.2. Vorteile gegeniiber Docker

 Daemon-los
* Verbesserte Sicherheit durch Root-losen Betrieb

» Aufgeteilte Befehle fiir verschiedene Aufgaben

16.3. Installation

16.3.1. macOS

 Installation iber Homebrew: brew install podman

* VM-Initialisierung: podman machine init und podman machine start

16.3.2. Linux

* Ubuntu: sudo apt-get -y install podman

» Fedora: sudo dnf -y install podman

16.4. Haufig verwendete Befehle

* podman pull: Image herunterladen

e podman run: Befehl in neuem Container ausfithren

* podman ps: Container auflisten

e podman exec: Prozess in laufendem Container ausfiithren

* podman stop: Container stoppen

16.5. Links

* https://podman.io

43

https://podman.io

17. Trivy

Vulnerability Scanner

v

Qqua

trlvg

Im stetig wachsenden digitalen Zeitalter spielen Sicherheit und Datenschutz eine immer wichtigere
Rolle. Ein kritischer Aspekt davon ist die Aufdeckung und Behebung von Sicherheitsliicken in
Software, auch als Vulnerabilities bekannt. Ein Tool, das sich dabei als besonders niitzlich erweist,
ist der Trivy-Scanner.

17.1. Was ist Trivy?

Trivy, entwickelt von Aqua Security, ist ein umfassender und einfach zu bedienender Vulnerability-
Scanner fir Container und andere Artefakte. Es wurde mit dem Fokus auf Komfort und Effizienz
entwickelt, ohne dabei auf Prazision und Zuverlassigkeit zu verzichten.

Trivy ist leicht zu installieren und kann sowohl auf der Kommandozeile als auch in der CI/CD-
Pipeline genutzt werden. Es hat eine umfangreiche Abdeckung von Betriebssystemen und
Sprachpaketen und liefert genaue Ergebnisse, indem es sowohl Betriebssystem- als auch
Sprachspezifische Schwachstellen aufdeckt.

44

Container Image

77707,

Mi/séonﬁg(«ro\tion'f o

17.2. Warum Trivy?

Das Besondere an Trivy ist seine einfache Handhabung. Es erfordert keine aufwendige
Konfiguration und ist daher besonders benutzerfreundlich. Die Benutzer mussen nur den Namen
des Containers oder des Repositories angeben, und Trivy kimmert sich um den Rest.

Dartiiber hinaus besticht Trivy durch seine geringe False-Positive-Rate. Dies ist von entscheidender
Bedeutung, da ein uUbermafdig hoher False-Positive-Rate die Effektivitit eines Vulnerability-
Scanners erheblich einschrdanken kann. Durch die Verwendung eines umfassenden
Schwachstellendatensatzes und einer genauen Matching-Logik kann Trivy eine genaue und
effiziente Analyse bieten.

17.3. Codebeispiele

Hier sind ein paar Beispiele, wie Sie den Trivy-Scanner in Ihren Code integrieren konnen.

17.3.1. Scannen eines Docker-Images

Das einfachste Beispiel ist das Scannen eines Docker-Images. Hier ist ein Befehl, um ein Image zu
scannen:

trivy image [Optionen] ImageName
Beispiel:

trivy image python:3.7-alpine

17.3.2. Scannen eines Dateisystems

Sie kdnnen auch ein bestimmtes Dateisystem mit Trivy scannen:

trivy fs /pfad/zum/dateisystem

45

17.3.3. Integration in eine CI/CD Pipeline

Trivy kann auch in CI/CD-Pipelines integriert werden. Hier ist ein einfaches Beispiel fir die
Integration in eine GitHub Actions Pipeline:

name: CI

on:
push:
branches: [master]

jobs:
trivy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v?

- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
with:

image-ref: 'python:3.7-alpine’
format: 'template'

template: '@/contrib/sarif.tpl’
output: "trivy-results.sarif'

- name: Upload Trivy scan results to GitHub Security tab
uses: github/codeql-action/upload-sarif@v1
with:
sarif_file: 'trivy-results.sarif’

17.4. Zusammenfassung

Zusammenfassend ldsst sich sagen, dass Trivy eine hervorragende Wahl fiir Entwickler und
Sicherheitsteams ist, die einen grindlichen und zuverlassigen Vulnerability-Scanner bendétigen. Mit
seiner einfachen Handhabung, genauen Ergebnissen und weitreichenden Abdeckung ist Trivy ein
unverzichtbares Tool in der modernen Softwareentwicklung.

Es ist klar, dass die Bedeutung von Vulnerability Scanning in der heutigen Welt nicht genug betont
werden kann. Und mit Tools wie Trivy wird diese Aufgabe um einiges einfacher und effektiver. Mit
kontinuierlichen Updates und Verbesserungen bleibt Trivy auch weiterhin ein Vorreiter auf dem
Gebiet der Sicherheit im Bereich Softwareentwicklung.

Indem wir die Risiken erkennen und aktiv angehen, konnen wir sicherstellen, dass unsere digitalen
Losungen sicher bleiben und weiterhin Vertrauen und Zuverldssigkeit bieten. Dabei ist Trivy ein
wichtiger Verbuindeter.

46

17.5. Links

* https://aquasecurity.github.io/trivy/dev/

47

https://aquasecurity.github.io/trivy/dev/

18. Asciidoctor

T

AsciiDoc ist eine vereinfachte Auszeichnungssprache, die dazu dient, Texte in verschiedenen
Dokumentenformaten zu veroffentlichen.

AsciiDoc hat den Vorteil, leicht erlernbar zu sein und auch unverarbeitet (als Quelltext) gut lesbar
zu sein.

18.1. Welches Problem wird damit gelost?

* docx, pdf nicht in GIT / Versionskontrolle verwaltbar
* Erstellung von Dokument in verschiedenen Formaten ist aufwendig
* Ergebnis nicht immer korrekt reproduzierbar

* Anpassungen benétigen oft spezielle Software (Office, Visio, usw.)

18.2. Wie lost Aciidoc diese Probleme?

e Asciidoc Dokumente sind in Rohform lesbar

* Doc as code

Presentation as code

Keine spezielle Software notwendig

Ausgabe in verschiedene Formate maoglich

Formatierung tiber Templates
18.3. Asciidoc Code - Example

1 = Asciidoc Beispiel

2 :Author: Thomas Siwczak

3 :Email: thomas.siwczak@de.experis.com
4 :Date: 11.05.2022

5 :Revision: 1.2.3

6 :data-uri: true

7 :toc: // Inhaltsverzeichnis

48

8

9 == Erstes Kapitel

10

11 Hier konnte hier Werbung stehen. Allerdings wird das

12 nicht billig! Zeilenumbriiche im Text werden nicht (bernommen.

13

14 Zweiter Absatz - wird durch eine Leerzeile getrennt.
15 Danach folgt ein Bild.

16

17 .Schénes Bild

18 image::../images/nice-pic.jpg[width=50%,align="center"]
19

20 == Zweites Kapitel

21

22 Noch mehr niitzliche Informationen, die mit Geld

23 nicht zu bezahlen sind.

HTML-Version dieses Asciidoc Beispiels

18.4. Ergebnis als Html Output

Asciidoc Beispiel

Thomas Siwczak - thomas.siwczak@de.experis.com

Table of Contents

Erstes Kapitel
Zweites Kapitel

Erstes Kapitel

Hier konnte hier Werbung stehen. Allerdings wird das nicht billig! Zeilenumbriiche im Text werden nicht tibernommen.

Zweiter Absatz - wird durch eine Leerzeile getrennt. Danach folgt ein Bild.

Figure 1. Schones Bild

Zweites Kapitel

Noch mehr niitzliche Informationen, die mit Geld nicht zu bezahlen sind.

18.5. Funktionsiuibersicht

49

example_1.html

Asciidoctor

—— | adoc

Actor

HTML

N

BOOK
(XML)

00—
0—
00—

/ Template

PDF
Slides

18.6. Headlines

== Level 1 / Kapitel

Level 1/ Kapitel

=== Level 2

Level 2

==== Level 3

Level 4
18.7. Paragraphs

1 Ein erster Absatz mit nicht ganz so viel Text.
2 *Auch hier konnte ihre Werbung stehen!*
3

4 Der zweite Absatz wird durch eine Leerzeile

50

Pandoc

/

00—
O—
O0—

Template \

DOCX

5 getrennt und dadurch automatisch ein neue Absatz erzeugt.

Ein erster Absatz mit nicht ganz so viel Text. Auch hier konnte ihre Werbung stehen!

Der zweite Absatz wird durch eine Leerzeile getrennt und dadurch automatisch ein neue Absatz
erzeugt.

18.8. Formatierung
Fett

Fett
Kursiv_

Kursiv
+Monospace+

Monospace

Einen Zeilenumbruch +
erzwingen

Einen Zeilenumbruch
erzwingen

18.9. Images

1 image::images/nice-pic.jpg[]
2 // oder mit optionalen Attributen
3 image::images/nice-pic.jpg[width=50%, algin="center"]

31

18.10. Listen

1
2
3
4
5
6
/

// unordered list
* First

** sub first

** sub secound
**% Sub Sub

* Second

* Thirt

// ordered list
. First

. sub first

. sub secound
... Sub Sub

. Second

. Thirt

~N O U1 B W N -

18.11. Listen Ergebnis

Unordered list
* First
o sub first
o sub secound
= Sub Sub
» Second

e Thirt

Ordered list
1. First

32

a. sub first
b. sub secound
i. Sub Sub
2. Second

3. Thirt

18.12. Tabellen

A table with a title

|Column 1, header row |Column 2, header row
|Cell in column 1, row 2
|Cell in column 2, row 2

Column 1, header row Column 2, header row

Cell in column 1, row 2 Cell in column 2, row 2

18.13. Tabellen - Best Practice

%header, format=csv]

Artist,Track,Genre
Baauer,Harlem Shake,Hip Hop
The Lumineers,Ho Hey,Folk Rock

Artist Track Genre
Baauer Harlem Shake Hip Hop
The Lumineers Ho Hey Folk Rock

18.14. Sourcecode

[source, java, linenums]

class Simple{
public static void main(String args[]){
System.out.println("Hello Java");

}

33

1 class Simple{

2 public static void main(String args[]){
3 System.out.println("Hello Java");

4 }

5}

18.15. Inhaltsverzeichnis

Im Dokumenten-Header :toc: angeben, damit wird automatisch ein Inhaltsverzeichnis erstellt.

= Dokument mit Inhaltsverzeichnis
Thomas Siwczak <thomas.siwczak@de.experis.com>

:toc: // normal

:toc: left // In HTML Ausgabe Inhaltsverzeichnis links

:toc: macro // Damit kann das Verzeichnis frei platziert werden
// some Text

toc::[] // Platzierung des Verzeichnis

18.16. Diagram Source

// Diagram MSD30
[ditaa, "diag-msd30@", title="MSD3@", caption="Abbildung {counter:abbl}: ",6align="center", debug=falsel]
/ \
| | D || dzK
EE—— / |1
/ \ [mmmm e \ |1
| [| cDDE | Il
| /912 \ \-—--1093-———— + |< \
| | | | ProvService | (]
| | v /=>| | <= \
Vo frmmmmm s \ [l I |
[==————————=\ | cFFE | |\ / | |
| CEFF | | +-—-1088--/ |1 /T \
		SDK 2.0			Router	cADE
HPESM			< 865 >	CcADE		
		Ansible Tower	I	A /		
[< 05 N			
\———/			\=>	KonSl		
	< 907 \					
\ \	\ /					
1 Ao						
[[
\=——mmm /	1	[mmm e \				
		CcADE				
\--->	KonAu					
= /						
/=== \						
	CADE					
\ = >	KonMa					
[
\——mmm /						
[mmmmm e /						
e \						
Router	cADE					
R — >	CADE					
e						
MFZ						
\ = /
\ /

54

18.17. Diagram - Output

Abbildung 1: MSD30

Failed to generate image: Could not find Java executable

oo /

|

| S S S e S S e S e e \ [==— === \
|

I | | | cDDE |
| | /-------- 912-------- \ \----1093----- +

| <= == \ |

| | | | ProvService |
|

| | v /->|

|<--mmmmmmm e \ |

| VooV [\ ||

| |

| /----------- \ | cFFE | | \----mmmo-- /
| |

| | cEFF | | +---1088--/

[—t-——t-—-—- \ |

| | | | SDK 2.0 |

Router |cADE | |

| | HPESM | | |<----mmmmm e 865---------
cADE | | |

| | | | Ansible Tower |

tommmmo- / I

| | | | [<-----mmmmmmme e 995------------
I .

| \--omooeee- / | I

KonS1 | |

| | [<----mmmmmmmm - 907-----------
I

| | I

\-mmmmmem o /| |

| | e e 16---------- \
|

| | I |
|

| \-mmmmmme - /

J e e \ |

| |
cADE | |

| |
KonAu | |

dzK

| \->]

Y=

55

e

—_—

|

[hmm oo\

Router |cADE |

cADE

]

e html
o pdf

18.18. Output Format

36

* xml / docbook

* reveal.js/Slides

* mit Pandoc weitere Formate:
o docx
o odt

o uvim.

18.19. Best Practice

folgt in Kirze ...

» Captions
* includes
» Tabellen
* Diagrams
* Templates

°* uvim.

18.20. Captions

18.21. Best Practice - Includes

Mittels includes lassen sich komplette Source Code Dateien oder Config Files extern in die
Dokumentation einbinden (z.B. yaml files) Dadurch wird bei der Aktualisierung des Sourcecode
automatisch auch immer die Dokumentation mit aktualisiert.

(adoc, Code, meta-data, uws.)

18.22. Best Practice - Diagrams

 ditaa
* plantuml

e draw.io ?

18.23. Best Practice - Tabellen mit csv
18.24. Best Practice - Templates

18.25. Pandoc

57

18.26. Dokumente generieren
Einfaches Beispiel

asciidoctor handbuch.adoc

Beispiel mit Diagram-Addon

asciidoctor handbuch.adoc -r asciidoctor-diagram

Generierung von PDF
asciidoctor-pdf handbuch.adoc

// oder
asciidoctor-pdf handbuch.adoc -r asciidoctor-diagram -o output/handbuch.pdf

18.27. Dokumente generieren mit Docker

// asciidoctor

docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor
index.adoc

// asciidoctor-pdf

docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor-pdf
index.adoc

// asciidoctor mit diagram

docker run --rm -v $(pwd):/documents/ asciidoctor/docker-asciidoctor asciidoctor -r
asciidoctor-diagram index.adoc

o Aktuelles Verzeichnis als Volume angeben:
-v $(pwd):/documents/

18.28. Dokumente generieren mit Podman

podman run --rm -v $(pwd):/documents/ docker.io/asciidoctor/docker-asciidoctor
asciidoctor-pdf index.adoc

e Imagename = docker.io/asciidoctor/docker-asciidoctor

18.29. Links / Cheatsheet

¢ Asciidoctor Doku

38

https://docs.asciidoctor.org/asciidoc/latest

Quick Reference
Cheatsheet
Ascciidoc Diagram online editor https://asciiflow.com/

Convert Markdown to Asciidoc

39

https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/
https://powerman.name/doc/asciidoc-compact
https://asciiflow.com/
https://matthewsetter.com/convert-markdown-to-asciidoc-withpandoc/

19. Hugo

[hugo logo wide] | /images/logos/hugo-logo-wide.svg

19.1. Einfihrung

Hugo ist ein statischer Site-Generator, der in Go geschrieben wurde. Er ist bekannt fir seine
Geschwindigkeit und Flexibilitdit. Im Gegensatz zu dynamischen Web-Content-Management-
Systemen, die Serverressourcen bendtigen, generiert Hugo die gesamte Website in HTML, CSS und
JavaScript vor dem Hochladen auf den Server.

19.2. Hauptmerkmale von Hugo

Die Hauptmerkmale von Hugo beinhalten:
» Schnelligkeit: Hugo ist bekannt als der schnellste Website-Generator auf dem Markt. Er kann
Tausende von Seiten in Sekundenbruchteilen generieren.

* Go Templates: Hugo verwendet Go’s eingebaute Template-Bibliothek fiir die Erstellung von
Website-Templates.

* Markdown Unterstiitzung: Hugo unterstiitzt Markdown fiir Inhalte, was es einfach macht,
Inhalte zu erstellen und zu formatieren.

* Anpassungsfahigkeit: Hugo kann einfach angepasst werden, um eine Vielzahl von Website-
Typen zu erstellen, einschliefdlich Blogs, Dokumentation, Portfolio-Sites und mehr.

19.3. Hugo’s Architektur

Hugo verwendet eine einfache Verzeichnisstruktur, die es dem Benutzer ermdglicht, die Struktur
und das Design seiner Website intuitiv zu verstehen. Die Hauptkomponenten sind:

* Content-Verzeichnis: Hier speichert der Benutzer seine Inhaltsdateien. Jede Datei wird zu einer
Seite auf der Website.

* Layout-Verzeichnis: Hier werden die HTML-Templates gespeichert, die definieren, wie die
Website aussieht.

* Static-Verzeichnis: Hier werden alle statischen Ressourcen wie Bilder, CSS- und JavaScript-
Dateien gespeichert.

19.4. Fazit

Hugo ist ein leistungsfahiges Tool fiir die Erstellung von Websites. Seine Geschwindigkeit,
Flexibilitat und einfache Anpassung machen es zu einer ausgezeichneten Wahl fiir Entwickler aller
Erfahrungsstufen.

60

19.5. Links

* Hugo
* Docker for Hugo

* https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-
8765485b0c39

Usage with asciidoc

61

https://gohugo.io
https://blog.callr.tech/static-blog-hugo-docker-gitlab
https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-8765485b0c39
https://medium.com/@wabimantoro/create-and-deploy-website-for-free-with-hugo-8765485b0c39
https://gohugo.io/content-management/toc/#usage-with-asciidoc

20. Git

20.1. Was ist Git?

Git ist eine Sammlung von Dienstprogrammen in der Kommandozeile, die Anderungen in Dateien
verfolgen und aufzeichnen (meistens Quellcode, aber du kannst alle moglichen Dateien wie
Textdateien und sogar Bild-Dateien "tracken".

Durch diese Funktionalitdt kannst du alte Versionen deines Projekts wiederherstellen, miteinander
vergleichen, analysieren, Anderungen zusammenfiihren (mergen) und vieles mehr.

20.2. Die Vorteile der Versionsverwaltung mit Git

* verteiltes System zur Codeverwaltung
» Snapshots des aktuellen Zustands eines Codes
 Effiziente und intelligente Zusammenarbeit im Team

* Es erzeugt Zweige, die mehrere Arbeitsstrome von verschiedenen Entwicklern, unabhédngig
voneinander, festhalten. Diese Zweige konnen zu einer einzigen Code-Datei zusammengefiihrt
werden.

+ Anderungen am Code sind nachvollziehbar, wer ihn gedndert hat, wann er geindert wurde und
welche Versionen es vorher gab.

* Es ist betriebssystem- und sprachunabhdngig. Jeder Entwickler kann von jedem System und mit
jeder Sprache an Git arbeiten.

* Git ist nattirlich nicht die einzige Versionsverwaltung. Andere Versionsverwaltungssysteme sind
CVS, Bazaar und SNV.

20.3. Funktionsweise

20.4. Repo Arten

Normales Git Repo

Repository (History) und Arbeitsverzeichnis fiir Anderungen

62

Bare / mirror
nur Repository und kein Arbeitsverzeichnis

zur zentralen Ablage / pull & push moglich

20.5. Haufig genutzte Commands

Es folgt eine Auswahl der haufig genutzten Befehle

init, clone, config, status, log, add, commit, fetch, pull, push, stash, branch, remote

20.6. git init / git clone

Dieser Befehl (git init) initialisiert ein neues lokales Git Repository. Der Repo-Name wird direkt
nach dem Befehl hinzugefugt.

git init <myrepo>

Mit diesem Befehl (git clone) konnen wir den Quellcode aus einem entfernten Repository auf einen
lokalen Rechner herunterladen. Er erstellt eine Kopie dieses Repos auf dem lokalen Rechner.

git clone <URL>

o Es ist auch moglich lokale Repos aus dem Dateisystem zu clonen, muss nicht
zwingend von einem Server erfolgen.

20.7. git config (email, name)

Dieser Befehl erlaubt es dir, git mitzuteilen, wer du bist. Du kannst deinen Namen und deine E-Mail
hinzufigen.

git config --global user.name O[firstname lastname]0

set a name that is identifiable for credit when review version history
git config --global user.email O[valid-email]d

set an email address that will be associated with each history marker
git config --global color.ui auto

set automatic command line coloring for Git for easy reviewing

63

20.8. git status

Dieser Befehl zeigt den Status eines Branches an. Die Verwendung dieses Befehls sagt uns, ob es
ungetrackte, staged oder unstaged Dateien gibt. Es ldsst uns wissen, ob es Dateien zum Committen,
Pushen oder Pullen gibt und ob ein Branch aktuell ist.

git status

% git status
Auf Branch dev
Ihr Branch ist auf demselben Stand wie 'origin/dev'.

Anderungen, die nicht zum Commit vorgemerkt sind:

(benutzen Sie "git add <Datei>...", um die Anderungen zum Commit vorzumerken)
(benutzen Sie "git restore <Datei>...", um die Anderungen im Arbeitsverzeichnis zu verwerfen)

keine Anderungen zum Commit vorgemerkt (benutzen Sie "git add" und/oder "git commit -a")

Figure 1. Beispiel - git status

20.9. git diff

diff of what is changed but not staged
git diff

diff of what is staged but not yet committed
git diff --staged

% git diff
diff --git a/doku/incl/git.adoc b/doku/incl/git.adoc
index 6857a29..71lea2d2 100644
=== a/doku/incl/git.adoc
u/incl/git.adoc

piel git diff
rimages/git—diff

git log

git add

Figure 2. Beispiel - git diff

64

20.10. git log

Listet all Commits fiir den aktuellen Branch auf.
git log

um die Anzahl beschranken kann man einen Parameter angeben, z.B. fir 3 "-3" und fir einen
einzeilige Anzeige wird der Parameter "--pretty=oneline" benutzt.

git log -10 --pretty=oneline
Um einen bestimmt Datei zu verfolgen:

git log --follow [file]

20.11. git add

Hiermit wird eine Datei bereitgestellt, damit sie an das Repository tbergeben werden kann. Sie
konnen auf drei Arten bereitstellen.

 git add * flgt alle Dateien, Ordner und Unterordner in einem Verzeichnis hinzu, mit Ausnahme
von Dateien, die mit einem Punkt wie .gitignore beginnen.

« git add <filename> flgt nur die Datei hinzu, die mit dem Dateinamen angegeben wurde.

 git add . fligt alle Dateien, Ordner und Unterordner in einem Verzeichnis hinzu, einschliefilich
der Dateien, die mit einem Punkt wie .gitignore beginnen.

git add <filename>

// for example
git add hallo.txt

20.12. git commit

Dieser Befehl speichert Snapshots der Arbeitsversion eines Projekts. Er tut dies, indem er alle
Dateien in das Repository uibertragt. Du kannst commit nur verwenden, nachdem du die Dateien
mit git add ins Repository gestellt hast.

Commits werden normalerweise mit einer Commit-Nachricht hinzugefugt.

git commit -m O[descriptive message]l

65

Alternativ kann auch der Parameter -m weg gelassen werden, dann 6ffnet sich im Anschluss der
Standart Editor, wo dann die Commit Message bearbeitet / eingegeben werden muss.

o Die Commit-Message sollte einer gewissen Struktur entsprechen, mehr dazu im
Abschnitt: Commit Messages

20.13. git show (new)

Zeigt die letzt commit meaasge an oder eine bestimmte, wenn man einen commit hash angibt

git show -s

git show -s b907a23e9cdf08f04c009863140c3460bbOf {748

% git show b987a23ePcdfP8TA4CcBP9863140c3460bbBTT748 -5
commit b987a23e9cdfeBfB4cBe?863148c3468bbOTT748
Author: Martin Fischer <martin.fischerf@de.experis.com>
Date: Thu Jul 7 17:32:82 2822 +8288

ADD: Added interactive git demo URL

Figure 3. Beispiel - git show

20.14. git fetch / git pull

fetch - fetch down all the branches from that Git remote
git fetch

git pull holt und 1adt Inhalte von einem entfernten Repo herunter und aktualisiert das lokale Repo
mit den heruntergeladenen Inhalten.

git pull
20.15. git push
Dieser Befehl pusht iibertragene Anderungen aus einem lokalen Branch in ein anderes Repository.

git push [alias] [branch]
// for example
git push origin dev

66

20.16. git - stages

. Local
workspace staging

repository

git add/mv/rm
git commit

git commit -a

git reset <file> .
git push

git reset <commit>

Ei t diff git fetch

git dlff HEAD

20.17. git stash (list, show, drop, pop / apply)

git clnnejpull

Stash local changes

git stash

List stashed changes

git stash list

Show stashed changes

git stash show

Remove stashed changes

git stash drop [<stash>]

Create branch from stashed changes and delete(!) stash

Remote

repository

67

git stash branch <branchname> [stash>]
Remove single stashed state from stash list and apply it on current working tree
git stash pop [<stash>]
Apply stash to current working tree
git stash apply [<apply>]
Remove all stash entries
git stash clear
Saving temp work without stash

// hack hack hack

git switch -¢ my_wip

git commit -a -m "WIP"

git switch master

edit emergency fix

git commit -a -m "Fix in a hurry"
git switch my_wip

git reset --soft HEADA

// continue hacking

Saving work with stashing

// hack hack hack

git stash

edit emergency fix

git commit -a -m "Fix in a hurry"
git stash pop

// continue hacking

20.18. branches
Show local branches
git branch

Show all branches

68

git branch -a
Create new branch

git branch <my_branch>
git checkout <my_branch>

Alternativer Shortcut
git checkout -b <my_branch>
Unterschiede zwischen Branches ermitteln / anzeiegn

git diff branchB...branchA

20.19. git remote

Origin - default remote

show details of remote settings
git remote show origin
get the remote repo-url
git remote get-url origin
set a new url for remote repo
git remote set-url origin
Weitere Remotes sind mittels
git remote add <name> <url>

definierbar.

20.20. Git stages

69

20.21. Commit Messages

Commit Messages sollten mit einer gewissen Stuktur erstellt werden: ADD:, CHG:, DEL: der Message
voranstellen, Kurzbeschreibung in einer Zeile. Ausfiihrliche Beschreibung der Anderung (Was, in
welche[r |n] Datei[en], ggfs. Change-Nr, in weiteren Zeilen

20.22. .gitignore file

20.23. Best Practice

Does Don’t does

Name & Email setzen git push --force

gute commit messages bad code pushen

Branches nutzen in master / main pushen

max 1 Funktion in commit viele Changes in 1 Commit packen

20.24. Git-Submodule

Ein Git-Submodul ermdoglicht es Thnen, ein Git-Repository als Unterverzeichnis in einem anderen
Git-Repository zu haben. Dies ist niitzlich, wenn Sie Code wiederverwenden modchten, der in einem
anderen Repository gepflegt wird. Hier ist ein einfacher Leitfaden, um ein Git-Submodul
hinzuzufligen und es zu nutzen:

20.24.1. Git-Submodul hinzufiigen

Um ein Submodul hinzuzufiigen, verwenden Sie den git submodule add Befehl, gefolgt von der URL
des Repositories, das Sie als Submodul hinzufiigen mochten. Zum Beispiel:

1 git submodule add https://github.com/beispiel/repo.qgit

Dieser Befehl erzeugt ein neues Unterverzeichnis in Threm aktuellen Repository, klont das andere
Repository hinein und setzt es auf den aktuellen Commit fest.

20.24.2. Git-Submodul aktualisieren

Nachdem das Submodul hinzugefiigt wurde, ist es auf den Commit festgesetzt, der zu der Zeit
aktuell war. Wenn Sie das Submodul auf den neuesten Stand bringen mochten, miissen Sie das
Unterverzeichnis des Submoduls wechseln und git pull ausfithren.

1 cd repo
2 git pull origin main

70

20.24.3. Git-Submodul entfernen
Das Entfernen eines Submoduls erfordert ein paar Schritte mehr:

* Entfernen Sie das Submodul aus der .gitmodules Datei.

* Entfernen Sie das Submodul aus der .git/config Datei.

* Fihren Sie git rm --cached path_to_submodule aus (keinen abschliefdenden Schragstrich).

* Fihren Sie rm -rf .git/modules/path_to_submodule aus.

¢ Commit und léschen Sie das nun unverfolgte Submodul-Verzeichnis.

1 git rm --cached repo
2 rm -rf .git/modules/repo
3 rm -rf repo

Bitte ersetzen Sie repo durch den Namen Ihres Submoduls.

20.25. Nutzliche Commandos / Befehle

Ermittelt die hochste Version / hochsten git tag

1 // tags aus remote repos abrufen

2 git fetch --tags

3

4 // tags auflisten | sortieren | letzten anzeigen
5 git tag | sort -V | tail -n 1

20.26. Links / Cheatsheet

Git - Installation & Dokumentation

Git Book
https://education.github.com/git-cheat-sheet-education.pdf
https://www.atlassian.com/git/tutorials/why-git

Interactive git branch demo

71

http://git-scm.com
https://git-scm.com/book/en/v2
https://education.github.com/git-cheat-sheet-education.pdf
https://www.atlassian.com/git/tutorials/why-git
https://learngitbranching.js.org/?locale=de_DE

21. Semantic Versioning

21.1. Zusammenfassung

Auf Grundlage einer Versionsnummer von MAJOR.MINOR.PATCH werden die einzelnen Elemente
folgendermafien erhoht:
1. MAJOR wird erhéht, wenn API-inkompatible Anderungen veroffentlicht werden,

2. MINOR wird erhoht, wenn neue Funktionalitdten, die kompatibel zur bisherigen API sind,
veroffentlicht werden, und

3. PATCH wird erhoht, wenn die Anderungen ausschlielich API-kompatible Bugfixes umfassen.

AufSerdem sind Bezeichner fiir Vorveréffentlichungen und Build-Metadaten als Erweiterungen zum
MAJOR.MINOR.PATCH-Format verfiighar.

21.2. Links / weitere Infos

* Semantic Versioning 2.0.0
¢ Conventional Commits

¢ Commitizen Tool

72

https://semver.org/lang/de/spec/v2.0.0.html
https://www.conventionalcommits.org/en/v1.0.0/
https://commitizen-tools.github.io/commitizen/

22. RKE2 - Rancher

RKE2 steht fir "Rancher Kubernetes Engine 2", und es handelt sich dabei um eine Kubernetes-
Distribution, die von Rancher Labs entwickelt wurde. Kubernetes ist ein Open-Source-Container-
Orchestrierungs-Framework, das dazu dient, Container-Anwendungen in skalierbaren,
hochverfiighbaren Clustern zu verwalten. RKE2 ist eine spezielle Implementierung von Kubernetes,
die einige besondere Merkmale und Vorteile bietet:

1. Einfache Bereitstellung: RKE2 wurde entwickelt, um die Bereitstellung von Kubernetes-
Clustern zu vereinfachen. Es bietet ein benutzerfreundliches Installations- und
Konfigurationsverfahren, das auch fiir Einsteiger zuganglich ist.

2. Sicherheit: RKE2 setzt auf Sicherheit und konzentriert sich auf die Minimierung von
Angriffsflachen. Es verwendet standardmafiig den Containerd-Container-Manager anstelle von
Docker und bietet Funktionen wie SELinux und AppArmor zur weiteren Verbesserung der
Sicherheit.

3. High Availability: RKE2 unterstiitzt die Einrichtung von hochverfiigharen Kubernetes-Clustern.
Dies bedeutet, dass Ihr Cluster weiterhin funktionieren kann, selbst wenn einzelne
Komponenten oder Knoten ausfallen.

4. Automatisierung: RKE2 enthdlt Funktionen zur Automatisierung von Aufgaben wie Updates
und Upgrades, was die Wartung und Verwaltung Ihres Kubernetes-Clusters erleichtert.

5. Kubernetes-Kompatibilitat: RKE2 bleibt eng mit der Kubernetes-Community und dem
Kubernetes-Okosystem verbunden und ist daher mit vielen Kubernetes-Tools und -Ressourcen
kompatibel.

6. Modularitat: RKE2 verwendet eine modulare Architektur, die es Ihnen ermdoglicht,
Komponenten und Erweiterungen nach Bedarf hinzuzufiigen oder zu entfernen.

7. Unterstiitzung fir verschiedene Plattformen: RKE2 kann auf verschiedenen
Betriebssystemen und Infrastrukturplattformen, einschliefdlich Bare-Metal-Servern, virtuellen
Maschinen und Cloud-Diensten, ausgefiihrt werden.

Die Vorteile von RKE2 machen es zu einer attraktiven Option fiir Unternehmen und Entwickler, die
Kubernetes in ihren Anwendungen und Diensten verwenden mochten, da es die Einrichtung,
Verwaltung und Sicherheit von Kubernetes-Clustern erleichtert. Beachten Sie jedoch, dass sich die
Technologie und Features von RKE2 im Laufe der Zeit weiterentwickeln konnen, sodass es ratsam
ist, die neuesten Informationen und Dokumentationen zu uberpriufen, um die aktuellen
Funktionen und Best Practices zu verstehen.

22.1. Install

22.1.1. ARM64

1 mkdir /root/rke2-artifacts &% cd /root/rke2-artifacts

2 wget http://bit.1y/36Q0xhd rke2-images.linux-arm64.tar.gz

3 wget https://github.com/rancher/rke2/releases/download/v1.27.3+rke2r1/rke2.1linux-
armo4.tar.gz

73

4 wget https://github.com/rancher/rke2/releases/download/v1.27.3+rke2r1/sha256sum-

armo4. txt

5 curl -sfL https://get.rke2.i0 --output install.sh

6

7 INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh
install.sh

8

9 systemctl enable rke2-server
10 systemctl start rke2-server

Kubectl

1 curl -LO https://dl.k8s.io/release/v1.28.4/bin/1linux/armb4/kubectl
2 install kubectl /usr/local/bin
3 rm kubectl -f

1 curl -LO
https://qgithub.com/derailed/k9s/releases/download/v@.29.1/k9s_Linux_arm64.tar.gz

tar xvzf k9s_Linux_arm64.tar.gz k9s @®
install k9s /usr/local/bin

rm -f k9s k9s_Linux_armé64.tar.gz @

@ Unpack only k9s binary from archive
@ Cleanup

22.2. Create Aliase

1 alias kcn="kubectl config set-context --current --namespace’
2 alias k="kubectl'

3 alias kpo='kubectl get po -A'

4 alias kepo="kubectl get po -A | grep -Ev "Running|Completed"'

22.3. Links

e Offizelle Doku

74

https://docs.rke2.io/

23. HAProxy

Vor- und Nachteile, Installation & Konfiguration

HAProxy ist ein beliebter Load Balancer und Proxy-Server, der sich besonders durch seine Leistung
und Zuverlassigkeit auszeichnet. Im Vergleich zu anderen Load Balancern bietet HAProxy sowohl
Vorteile als auch Nachteile. Hier ist ein Uberblick:

23.1. Vorteile von HAProxy

1. Hohe Leistung und Zuverlissigkeit: HAProxy ist bekannt fiir seine hohe Durchsatzkapazitat
und geringe Latenz, was es ideal fiir hochverfiighare Umgebungen macht.

2. Flexibilitit in der Konfiguration: HAProxy bietet eine sehr detaillierte und flexible
Konfiguration, die es ermdoglicht, Verkehr sehr prazise zu steuern und zu manipulieren.

3. Unterstutzung fir HTTP und TCP: Es kann sowohl als HTTP-Load-Balancer als auch als
TCP/UDP-Load-Balancer verwendet werden, was es vielseitig einsetzbar macht.

4. Gesundheitspriifungen und Failover: HAProxy bietet fortschrittliche Gesundheitspriifungen
und Failover-Mechanismen, um die Verfiigbarkeit der Dienste zu gewahrleisten.

5. Open Source und Gemeinschaftsunterstiitzung: Als Open-Source-Tool hat es eine starke
Community, die standig zur Weiterentwicklung des Tools beitréagt.

6. SSL/TLS-Unterstiitzung: Es unterstiitzt SSL/TLS-Terminierung, was die Sicherheit verbessert.

23.2. Nachteile von HAProxy

1. Komplexitit in der Konfiguration: Die detaillierte Konfiguration kann fiir neue Benutzer
uberwaltigend sein und erfordert ein gewisses Maf$ an technischem Verstandnis.

2. Fehlende GUI: Im Gegensatz zu einigen anderen Losungen bietet HAProxy keine grafische
Benutzeroberflache, was die Konfiguration und das Management erschwert.

3. Eingeschriankter Support fiir Websockets: Obwohl HAProxy Websockets unterstiitzt, kann es
im Vergleich zu spezialisierten Losungen Limitierungen geben.

4. Keine native Cloud-Integration: Im Gegensatz zu Cloud-nativen Losungen wie AWS Elastic
Load Balancing oder Azure Load Balancer bietet HAProxy keine direkte Integration mit Cloud-
Diensten.

23.3. Vergleich mit Anderen Load Balancern

* Nginx: Nginx ist ebenfalls ein sehr beliebter Load Balancer und Webserver. Im Vergleich zu
HAProxy bietet Nginx eine einfachere Konfiguration und eine bessere Integration in
Webserver-Funktionalitdten, ist aber in einigen High-Performance-Szenarien moglicherweise
nicht so leistungsfahig wie HAProxy.

* AWS Elastic Load Balancing (ELB): ELB ist eine Cloud-native Losung, die eine nahtlose
Integration in AWS-Dienste bietet. Wahrend ELB eine einfache Konfiguration und automatische
Skalierung bietet, fehlt ihm die Flexibilitdt und detaillierte Konfigurierbarkeit von HAProxy.

75

» F5 Big-IP: Big-IP ist eine kommerzielle Losung, die neben Load Balancing auch Funktionen fiir
Anwendungssicherheit und Performance-Management bietet. Im Vergleich zu HAProxy bietet
Big-IP mehr Enterprise-Funktionen, ist aber auch kostenintensiver.

Jeder Load Balancer hat seine Starken und Schwéachen, und die Wahl hangt von den spezifischen
Anforderungen Threr Infrastruktur, lhrem Budget und Ihren technischen Fahigkeiten ab. HAProxy

ist eine ausgezeichnete Wahl fir Szenarien, in denen hohe Leistung, Zuverldssigkeit und
detaillierte Verkehrskontrolle erforderlich sind.

23.4. Installation

1. Systemaktualisierung:

o Debian-basierte Systeme:
sudo apt-get update

2. HAProxy installieren:

> Debian-basierte Systeme:
sudo apt-get install haproxy

o Fir andere Linux-Distributionen wie CentOS den entsprechenden Paketmanager
verwenden.

23.5. Grundlegende Konfiguration

1. Konfigurationsdatei bearbeiten:
- Die Standardkonfigurationsdatei befindet sich unter /etc/haproxy/haproxy.cfqg.
o Offnen Sie die Datei mit einem Texteditor, z.B. sudo nano /etc/haproxy/haproxy.cfg.
2. Einfachen Load-Balancer konfigurieren:
o Fligen Sie Abschnitte fiir defaults, frontend, und backend hinzu.
o Im frontend-Abschnitt definieren Sie den Port und leiten den Verkehr an backend weiter.

o Im backend-Abschnitt definieren Sie die Server fiir den Lastausgleich.

23.6. Beispielkonfiguration

defaults
mode http
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms

frontend http_front
bind *:80
default_backend http_back

backend http_back

76

balance roundrobin
server server1 192.168.0.1:80 check
server server2 192.168.0.2:80 check

23.7. Nach der Konfiguration

1. Konfiguration tiberpriifen:

o sudo haproxy -c -V -f /etc/haproxy/haproxy.cfg
2. HAProxy neu starten:

o sudo systemctl restart haproxy
3. Status uberpriifen:

o sudo systemctl status haproxy

23.8. Zusatzliche Schritte

* Sicherheitsaspekte: Konfigurieren Sie Ihre Firewall entsprechend.

* Erweiterte Konfiguration: Fir fortgeschrittene Einstellungen konsultieren Sie die HAProxy-
Dokumentation.

Wichtig: Diese Anleitung ist grundlegend. Fur spezifische Anforderungen und Architekturen sollten
Sie sich weitergehend informieren und die offizielle Dokumentation konsultieren.

77

24. Consul

Consul ist ein Dienstnetzwerk-Tool, das von HashiCorp entwickelt wurde, dem Unternehmen hinter
Vagrant und Packer. Es bietet eine vollstandige Plattform fir die Entdeckung von Diensten, die
Konfigurationsverwaltung und die Segmentierung in verteilten Anwendungen und Diensten.

24.1. Kernfunktionen von Consul

Consul bietet viele Funktionen, die dazu beitragen, die Herausforderungen des Betriebs von
verteilten Systemen zu bewaltigen. Dazu gehoren:

* Dienstentdeckung: Anwendungen konnen Consul verwenden, um andere Dienste im Netzwerk
mit einem DNS- oder HTTP-Interface zu entdecken.

* Gesundheitsiiberpriifungen: Consul kann die Verfiigharkeit von Diensten tiberwachen und
Anwendungen die Anforderungen an gesunde oder ungesunde Instanzen weiterleiten.

* Key/Value-Speicher: Ein flexibler Key/Value-Speicher ermdglicht die dynamische
Konfiguration, das Feature-Flagging, die Koordination, die Fiithrungswahl und vieles mehr.

* Sichere Dienstekommunikation: Automatische TLS-Verschliisselung und Identitdtsbasierte
Autorisierung fir Dienste.

24.2. Wie man Consul einsetzt

Consul ist sehr flexibel und kann in einer Vielzahl von Umgebungen und Anwendungsféllen
eingesetzt werden. Hier sind einige giangige Einsatzmoglichkeiten:

 Mikroservicenetze: Consul kann als zentrales Dienstverzeichnis fiir ein Netzwerk von
Mikroservices verwendet werden, um die Dienstentdeckung und -segmentierung zu
vereinfachen.

* Multicloud- und Plattformiibergreifende Bereitstellungen: Mit Consul kénnen Sie Dienste
uber verschiedene Cloud-Plattformen und -Bereitstellungsumgebungen hinweg koordinieren.

* Konfigurationsverwaltung: Sie konnen Consul verwenden, um Konfigurationsdaten fir Ihre
Anwendungen zu speichern und abzurufen.

Um Consul zu installieren und zu verwenden, laden Sie es von der offiziellen HashiCorp-Website
herunter und folgen Sie den Anleitungen in der Dokumentation. Ein typisches Consul-Setup konnte
mehrere Consul-Server enthalten, die in verschiedenen Teilen Ihres Netzwerks laufen, um Dienste
zu entdecken und zu uberwachen.

78

25. Tmux

Terminal-Multiplexer-Tool

Tmux, kurz fur 'Terminal Multiplexer', ist ein wertvolles Werkzeug fiir jeden, der viel Zeit in der
Befehlszeile verbringt. Es ermdglicht den Benutzern, mehrere Terminal-Sitzungen in einem
einzigen Fenster zu verwalten, und bietet eine Reihe von Funktionen, die die Produktivitat erhhen
und den Workflow optimieren.

25.1. Hauptmerkmale von Tmux

* Sitzungsmanagement: Tmux ermoglicht es Benutzern, Sitzungen zu erstellen, zu trennen,
anzuhdngen und zwischen ihnen zu wechseln, was es ideal fiir das gleichzeitige Arbeiten an
mehreren Aufgaben oder Projekten macht.

* Fenster und Bereiche: Innerhalb einer Tmux-Sitzung konnen Benutzer mehrere Fenster 6ffnen
und jedes Fenster in mehrere Bereiche unterteilen. Dies erleichtert die Navigation und das
Multitasking.

* Anpassbarkeit: Tmux ist hochgradig anpassbar wund erlaubt den Benutzern,
Schlisselbindungen zu d&ndern und das Aussehen des Interfaces anzupassen.

Mit Tmux kannst du deinen Befehlszeilen-Workflow erheblich verbessern, ob du nun ein
Entwickler bist, der mehrere Codebasen verwaltet, oder ein Systemadministrator, der verschiedene
Server iberwacht.

25.2. Installation

Abhéngig von deinem Betriebssystem, kann Tmux wie folgt installiert werden:
Ubuntu und andere Linux-Distributionen: sudo apt-get install tmux
Mac OS X: brew install tmux

Windows: Unter Windows empfehle ich die Verwendung von WSL (Windows Subsystem for Linux)
und dann den gleichen Befehl wie bei Ubuntu.

25.3. Erste Schritte

Nach der Installation kannst du eine neue Tmux-Sitzung starten, indem du tmux in die
Kommandozeile eingibst. Du solltest nun eine neue Tmux-Sitzung sehen mit einer Statusleiste am
unteren Rand.

25.4. Sitzungen, Fenster und Bereiche

In Tmux gibt es Konzepte wie Sitzungen, Fenster und Bereiche.

Sitzung: Eine Sitzung ist eine unabhdngige Arbeitsumgebung mit einer eigenen Gruppe von

79

Fenstern.
Fenster: Ein Fenster nimmt den gesamten Bildschirm ein und kann mehrere Bereiche enthalten.

Bereiche: Ein Fenster kann in mehrere Bereiche unterteilt werden.

25.5. Grundlegende Befehle

Um Befehle an Tmux zu senden, verwendest du den Tmux-Befehlspréfix, der standardméfig Ctri-b
ist, gefolgt von einem anderen Schliissel. Hier sind einige grundlegende Befehle:

Ctri-b "

Teilt das aktuelle Fenster horizontal.

Ctrl-b %

Teilt das aktuelle Fenster vertikal.

Ctrl-b o

Wechselt den Fokus zwischen Bereichen.

Ctrl-b ¢

Erstellt ein neues Fenster.

Ctrl-b n

Wechselt zum nachsten Fenster.

Ctr1l-b 1

Wechselt zum letzten Fenster.

Ctrl-b d

Trennt die aktuelle Sitzung (diese lauft weiter im Hintergrund).

25.6. Sitzungsmanagement

Tmux ermoglicht es dir, Sitzungen zu verwalten, die im Hintergrund laufen konnen. Hier sind
einige Befehle dazu:

tmux new -s mysession

Erstellt eine neue Sitzung namens "mysession".

tmux attach -t mysession

Héngt sich an eine vorhandene Sitzung namens "mysession" an.

tmux switch -t mysession

Wechselt zu einer vorhandenen Sitzung namens "mysession".

tmux list-sessions

Listet alle aktiven Sitzungen auf.

80

Bitte beachte, dass die Tastenkombinationen und Befehle konfigurierbar sind und durch die tmux-
Konfigurationsdatei (normalerweise ~/. tmux.conf) gedndert werden konnen.

Mit diesen grundlegenden Befehlen und Konzepten bist du in der Lage, effektiv mit Tmux zu
arbeiten und kannst deinen Workflow verbessern. Es gibt nattrlich noch viele weitere Befehle und
Moglichkeiten zur Anpassung, die du erkunden kannst, wenn du mit Tmux vertrauter bist.

25.7. Links /| Cheatsheet

* https://gist.github.com/MohamedAlaa/2961058

81

https://gist.github.com/MohamedAlaa/2961058

26. Vagrant

Vagrant ist ein Open-Source-Tool, das von HashiCorp entwickelt wurde, um die Erstellung und
Verwaltung von virtuellen Maschinen-Umgebungen zu vereinfachen. Vagrant ist
plattformunabhéngig und unterstiitzt eine Vielzahl von Betriebssystemen wie Linux, Windows und
Mac. Dariiber hinaus unterstiitzt es auch eine Vielzahl von Virtualisierungsplattformen, auch
Provider genannt, wie VirtualBox, VMware, Hyper-V und mehr.

26.1. Vorteile von Vagrant

* Einfache Verwendung: Vagrant bietet eine einfache Befehlszeilenschnittstelle zur Verwaltung
von virtuellen Maschinen. Mit einem einzigen Befehl konnen Sie eine VM starten, stoppen,
l6schen oder neu starten.

* Reproduzierbarkeit: Mit Vagrant konnen Sie eine "Vagrantfile" -Konfigurationsdatei erstellen,
die die Anforderungen Ihrer VM definiert. Dies stellt sicher, dass jeder, der das Vagrantfile hat,
genau die gleiche VM-Umgebung erstellen kann.

» Integration: Vagrant integriert sich nahtlos mit bestehenden Konfigurationsverwaltungstools
wie Chef, Puppet, Ansible und anderen, um die Konfiguration und Verwaltung von VMs zu
vereinfachen.

26.2. Wie man Vagrant einsetzt

Um Vagrant zu verwenden, folgen Sie den folgenden grundlegenden Schritten:

1. Installieren Sie Vagrant: Laden Sie Vagrant von der offiziellen Website herunter und
installieren Sie es auf IThrem System.

2. Erstellen Sie eine Vagrantfile: Eine Vagrantfile ist eine Konfigurationsdatei, die Vagrant sagt,
welche Art von Maschine und Ressourcen Sie bendétigen, und wie diese konfiguriert werden
sollen.

3. Starten Sie die VM: Verwenden Sie das 'vagrant up'-Kommando, um die VM zu starten. Vagrant
wird die VM entsprechend Ihrer Vagrantfile erstellen und konfigurieren.

4. Verbinden Sie sich mit der VM: Verwenden Sie das 'vagrant ssh'-Kommando, um sich mit Threr
VM zu verbinden und darauf zu arbeiten.

5. Beenden und Loschen Sie die VM: Wenn Sie mit Ihrer VM fertig sind, konnen Sie das 'vagrant
halt'-Kommando verwenden, um sie zu stoppen, und das 'vagrant destroy’-Kommando, um sie
zu loschen.

Vagrant bietet eine effiziente und flexible Méglichkeit, mit virtuellen Maschinen zu arbeiten. Ob Sie
eine isolierte Entwicklungsumgebung bendtigen oder eine komplexe VM-Infrastruktur verwalten,
Vagrant kann Ihnen dabei helfen.

82

27. Gegenuberstellung: Ansible, Chef, Puppet
und SaltStack

Die Gegenuberstellung von Ansible, Chef, Puppet und SaltStack offenbart unterschiedliche
Merkmale und Vorteile, die auf verschiedene organisatorische Bedirfnisse im Bereich der
Konfigurationsverwaltung zugeschnitten sind:

27.1. Ansible:

+ Typ: Uberwiegend agentenlos (unterstiitzt auch agentenbasiert).

* Hauptmerkmale: Automatisiert Cloud—Okosysteme, Anwendungen, Netzwerke, Container,
Sicherheit.

* Kompatibilitat: Funktioniert mit vielen Linux-Versionen, macOS, FreeBSD, Solaris; basiert auf
Python.

* Ansatz: Verwendet eine Kombination aus prozeduraler und deklarativer Sprache; zielt auf
gewlnschte Zustande ab.

* Vorteil: Vereinfacht IT-Bereitstellungen mit menschenlesbaren Datenbeschreibungen und
Modulen fiir Automatisierung.

27.2. Chef Infrastructure Management:

» Typ: Agentenbasiert.

* Hauptmerkmale: Automatisiert iiber Cloud, physische und virtuelle Ckosysteme; unterstutzt
AIOps.

* Kompatibilitat: Unterstiitzt verschiedene Unix-, Linux- und Windows-Versionen.

+ Ansatz: Verwendet Ruby; betont Skalierbarkeit und priventive Tests fiir Anderungen.

Vorteil: Gut fir Umgebungen, in denen Sicherheit entscheidend ist; ermdglicht autonome
Knoten.

27.3. Puppet Enterprise:

* Typ: Agentenlos.

* Hauptmerkmale: Betont Service-Stabilitat und -Zuverlassigkeit; verringert
Anderungsfehlerraten.

Kompatibilitat: Breite Unterstiitzung fliir moderne Betriebssysteme.

* Ansatz: Verwendet Infrastruktur als Code mit Zustandsdurchsetzung.

Vorteil: Vereinfacht das Management und ermdoglicht eine effizientere Handhabung von mehr
Ressourcen.

83

27.4. SaltStack:

* Typ: Bietet sowohl agentenbasierte (Minions oder Proxy-Agenten) als auch agentenlose
(SSH/WinRM) Moglichkeiten.

* Hauptmerkmale: Ereignisgesteuerte Automatisierung; bewaltigt komplexe Szenarien wie
mehrstufige Patch-Vorgéange.

* Kompatibilitat: Unterstiitzt Windows, verschiedene Linux-Distributionen und Unix.

Ansatz: Python-basiert mit YAML-Unterstiitzung; kombiniert imperativen und deklarativen
Ausfihrungsansatz.

Vorteil: Passt sich gut an skalierende Umgebungen mit komplexen Anforderungen an.

27.5. Fazit

Das richtige Werkzeug auswiahlen: Die Entscheidung dreht sich nicht darum, das beste Werkzeug
auf dem Markt zu finden, sondern das passendste fir die spezifischen Bedirfnisse einer
Organisation. Zu bertuicksichtigende Faktoren sind: - Agent vs. Agentenlos: Ansible und Puppet sind
agentenlos; Chef verwendet Agenten, und SaltStack bietet beides. - OS-Kompatibilitat: Dies kann
ein entscheidender Faktor sein, abhdngig von der Infrastruktur der Organisation. -
Teamkompetenz: Die Vertrautheit mit den zugrunde liegenden Programmiersprachen (z. B. Python
fir Ansible, Ruby fir Chef) ist wichtig. - Spezifische organisatorische Anforderungen: Jedes
Werkzeug hat einzigartige Starken, die fiir verschiedene Umgebungen und Bedurfnisse geeignet
sind.

Letztendlich werden die Starken und Kompetenzen des IT-Teams maifdgeblich beeinflussen, welches
Konfigurationsverwaltungsprodukt am geeignetsten ist.

84

28. WIP: GitOps / DevOps / SRE: Konzepte &
Tools

Prozessverbesserungsansatz der Softwareentwicklung und Systemadministration

Das Kernstiick der DevOps-Organisationskultur ist die Aufhebung der Trennung zwischen
Entwicklung und Operations zugunsten einer Kooperation.

28.1. GitOps

* Alles wird in Git Repositories gespeichert
+ Alle Anderungen werden ausschlielich aus Git gelesen
* incl. Infrastruktur (Infrastruktur as Code)

» Voraussetzung fur erfolgreiche Automatisierung

28.2. DevOps

 Begriff setzt sich aus "Dev" (Development) und "Ops" (Operations) zusammen

* zuvor getrennte Rollen wie Entwicklung, IT-Betrieb, Security arbeiten damit koordiniert
zusammen

* Bessere und zuverldssigere Produkte entstehen

» Schnellere Reaktion auf Anforderungen vom Kunden

Die Vorteile: Produktiver entwickeln, weniger Abhédngigkeiten, Qualitdtssteigerung

28.3. AppOps

* DevOps Is Dead, Long Live AppOps

28.4. SRE
ToDo

 https://medium.com/@interviewhelp/google-site-reliability-engineer-salary-e742a8b953c9
* SRE CHEAT SHEET

28.5. Links

ToDo

85

https://betterprogramming.pub/devops-appops-f096cdbb02ac
https://medium.com/@interviewhelp/google-site-reliability-engineer-salary-e742a8b953c9
https://kubernetes7.medium.com/sre-cheat-sheet-10e62c3a4c63

29. WIP: DevOps - Konzepte

* Source Code Management
* Package Management

* CI/CD

* Container Orchestration

* Cloud

* Infrastructure as Code

* Continuous Monitoring

29.1. 1. Source Code Management (SCM)

Tools: Git, Gitea, GitLab, GitHub

29.2. 2. Package Management

Tools: DockerHub, Jfrog, Nexus, GitLab

29.3. 3. CI/CD Concept

Tools: Jenkins, Gitlab CI/CD

29.4. 4. Container Orchestration

Tools: Kubernetes, OpenShift

86

29.5. 5. Cloud

Tools: AWS, Google Cloud, Oracle Cloud, Microsoft Azure

29.6. 6. Infrastructure as Code Concept (IaC)

Tools: Terraform, Ansible

29.7. 7. Continuous Monitoring

Tools: Nagios, Prometheus

87

30. WIP: Fahigkeiten fiir einen DevOps-
Ingenieur

Ein DevOps-Ingenieur muss eine Reihe von technischen und weichen Fahigkeiten besitzen. Hier
sind einige der wichtigsten:

30.1. 1. Kenntnisse von CI/CD-Tools

Continuous Integration / Continuous Delivery - Tools wie Jenkins, Bamboo oder GitLab CI sind
wesentlich fir den Automatisierungsprozess in DevOps.

30.2. 2. Kenntnisse in Cloud-Diensten

Vertrautheit mit Plattformen wie AWS, Google Cloud oder Microsoft Azure ist von Vorteil, da viele
Unternehmen ihre Infrastrukturen in der Cloud haben.

30.3. 3. Infrastruktur als Code (IaC)

Erfahrung mit Tools wie Ansible, Terraform oder Chef, die zur Automatisierung von
Infrastrukturaufgaben verwendet werden.

30.4. 4. Containerisierung und Orchestrierung

Kenntnisse in Docker und Kubernetes sind oft erforderlich, um den Prozess der
Softwarebereitstellung und -verwaltung zu optimieren.

30.5. 5. Programmier- und
Skripterstellungsfahigkeiten

Grundkenntnisse in Programmiersprachen wie Python, Ruby oder Java und Skripting-Sprachen wie
Bash oder PowerShell sind oft hilfreich.

30.6. 6. Systemadministration

Verstandnis fir Netzwerkprotokolle, Betriebssysteme und Sicherheit.

30.7. 7. Weiche Fahigkeiten

Starke Kommunikationsfahigkeiten, Problemlosungsfahigkeiten und die Fahigkeit, in einem Team
zu arbeiten, sind ebenfalls wichtig in der Rolle eines DevOps-Ingenieurs.

88

31. Semantische Versionshezeichnungen

Um semantische Versionsbezeichnung in einer GitLab-Pipeline zu realisieren, konnen Sie die
folgenden Schritte befolgen:

1. Generieren Sie eine neue Versionsnummer basierend auf den Anforderungen der semantischen
Versionsbezeichnung. Hierzu konnen Sie ein Skript verwenden, das in Threm Projekt nach
spezifischen Commit-Messages sucht, um zu bestimmen, ob es sich um eine Major-, Minor- oder
Patch-Anderung handelt.

2. In Threm .gitlab-ci.yml-Datei, definieren Sie einen Job, der das Skript ausfiihrt und die neue
Versionsnummer generiert. Speichern Sie diese Nummer als CI/CD-Variable fir die
nachfolgenden Jobs.

3. Verwenden Sie diese Versionsnummer in Ihren nachfolgenden Jobs - z.B. beim Bauen, Testen
und Bereitstellen Threr Anwendung.

4. Schliefdlich, in einem separaten Job, erstellen Sie ein neues Git-Tag mit dieser Versionsnummer
und pushen es zurtick in Thr Repository.

31.1. Beispiel

Hier ist ein einfaches Beispiel fur .gitlab-ci.yml:

stages:
- versioning
- build
- deploy

versioning:
stage: versioning
script:
- VERSION=$(./generate-version.sh) # Verwenden Sie Ihr eigenes Skript zur
Generierung der Version
- echo "VERSION=$VERSION" >> build.env

build:
stage: build
script:
- source build.env
- echo "Building version $VERSION"
Figen Sie hier Ihren Build-Code ein

deploy:
stage: deploy
script:
- source build.env
- echo "Deploying version $VERSION"
Figen Sie hier Ihren Deployment-Code ein
after_script:

89

- git tag $VERSION
- git push origin $VERSION

In diesem Beispiel verwendet generate-version.sh Ihr eigenes Skript zur Generierung der Version.
Sie konnen es so anpassen, dass es die Anforderungen der semantischen Versionsbezeichnung
erfullt.

Bitte beachten Sie, dass Sie geeignete Berechtigungen bendtigen, um Tags zu Threm Repository
hinzuzufiigen. Auch kann das Script je nach den spezifischen Anforderungen Ihres Projekts
variieren.

31.2. Links

* https://semantic-release.gitbook.io/semantic-release/#highlights

* https://gitlab.com/gitlab-org/gitlab/-/issues/16290

90

https://semantic-release.gitbook.io/semantic-release/#highlights
https://gitlab.com/gitlab-org/gitlab/-/issues/16290

32. WIP: Ansible Semaphore

New UI for a good old Ansible

Ansible Semaphore is beautiful web interface for running Ansible playbooks. You do not need to
change your playbooks to start using it.

32.1. Installation

sudo snap install semaphore

32.2. Links

* https://www.ansible-semaphore.com

91

https://www.ansible-semaphore.com

33. WIP: Ansible: Eine Einfuhrung und
Leitfaden

33.1. Einfiihrung

In der heutigen Welt der IT ist Automatisierung unerldsslich. Es ist wichtig, effizient zu sein und
gleichzeitig sicherzustellen, dass unsere Systeme ordnungsgemdfs konfiguriert sind. Hier kommt
Ansible ins Spiel. Ansible ist ein machtiges Werkzeug fiir die Automatisierung, das das
Konfigurationsmanagement, die Anwendungsbereitstellung, die Netzwerkautomatisierung und
viele andere IT-Anforderungen erleichtert.

33.2. Warum Ansible?

Ansible ist ein Open-Source-Tool fiir die Automatisierung von Software-Bereitstellungen,
Konfigurationsmanagement und Orchestrierung von Aufgaben. Es ist einfach zu verwenden, da es
keine Agenten-Software und Kkeine zusitzliche benutzerdefinierte Sicherheitsinfrastruktur
erfordert. Dariiber hinaus verwendet es eine sehr einfache Sprache (YAML, in Form von Ansible
Playbooks), die es Systemadministratoren und Entwicklern ermdglicht, Aufgaben einfach zu
beschreiben.

33.3. Was ist Ansible?

Ansible ist ein radikal einfaches IT-Automatisierungssystem. Es behandelt die Konfiguration von
Systemen, die Bereitstellung von Software und das Orchestrieren komplexerer IT-Aufgaben wie
kontinuierliche Bereitstellungen oder die Null-Ausfallzeit-Rolling-Updates.

33.4. Grundlegende Konzepte von Ansible

33.4.1. Inventory

Das Ansible Inventory ist eine Liste von Knoten, die als Ziel fir die Ansible Playbooks dienen. Ein
Knoten kann ein Server, ein Switch, ein Router oder jedes andere Gerét sein, das Uilber das Netzwerk
zuganglich ist. Die Knoten werden im Inventory normalerweise durch ihre IP-Adresse oder ihren
Hostnamen identifiziert. Sie konnen auch Knoten in Gruppen organisieren, um bestimmte
Konfigurationen auf eine Gruppe von Knoten anzuwenden.

33.4.2. Playbooks

Ansible Playbooks sind YAML-Dateien, die Thre Automatisierungs-Jobs beschreiben. Ein Playbook
kann aus einem oder mehreren 'Plays' bestehen, und ein 'Play’ ist im Wesentlichen eine Reihe von
Aufgaben, die auf den im Inventory definierten Zielknoten ausgefiihrt werden. Diese Aufgaben
werden sequenziell ausgefiihrt, von oben nach unten in der Datei.

92

33.4.3. Rollen

Rollen in Ansible bieten eine Methode zur Gruppierung verwandter Aufgaben und zur
Wiederverwendung von Code. Sie konnen eine Rolle erstellen, die eine bestimmte Funktion
ausfiuhrt, wie zum Beispiel das Einrichten eines Web-Servers, und diese Rolle dann in
verschiedenen Playbooks verwenden. Rollen erleichtern auch die Zusammenarbeit und die Code-
Organisation, indem sie eine standardisierte Datei- und Verzeichnisstruktur bereitstellen.

33.4.4. Module

Module sind die "Werkzeuge' in Threr Ansible-Werkzeugkiste. Sie fiihren bestimmte Aufgaben aus
und konnen unabhédngig oder in Playbooks verwendet werden, um komplexe Aufgaben
auszufihren. Es gibt Hunderte von eingebauten Modulen in Ansible, die eine breite Palette von
Funktionen abdecken.

33.5. Ein einfaches Ansible-Beispiel

33.6. Fazit

Die Kraft von Ansible liegt in seiner Einfachheit. Es nutzt einfache, menschenlesbare YAML-
Playbooks, um komplexe Aufgaben zu automatisieren. Die grundlegenden Konzepte - Inventar,
Playbooks, Rollen und Module - sind einfach zu verstehen und doch unglaublich méchtig in ihrer
Anwendung. Mit diesen Grundlagen sind Sie gut gerustet, um mit Ansible loszulegen und Ihre
Automatisierungsprojekte auf die nachste Stufe zu bringen.

33.7. Links /| Cheatsheet

* Getting started with Ansible
* Ansible: 30 Most Important Modules for DevOps Professional--Part 1
* Ansible: 30 Most Important Modules for DevOps Professional--Part 2

» Ansible: 30 Most Important Modules for DevOps Professional--Part 3

93

https://medium.com/@yhakimi/getting-started-with-ansible-and-ansible-playbooks-52072039d24b
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-1-fdd536b0790d
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-2-bb3f9739898e
https://faun.pub/ansible-30-most-important-modules-for-devops-professional-part-3-6494507184bb

34. WIP: Best Practices for managing BASH
Scripts

* https://madflojo.medium.com/best-practices-for-managing-bash-scripts-be2a36aa5147

94

https://madflojo.medium.com/best-practices-for-managing-bash-scripts-be2a36aa5147

35. WIP: Caching

35.1. Links

* https://blog.devgenius.io/a-comprehensive-guide-to-distributed-caching-827f1fa5a184

95

https://blog.devgenius.io/a-comprehensive-guide-to-distributed-caching-827f1fa5a184

36. WIP: Argo-Rollouts

36.1. Links

* https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-
automatic-rollout-abort-and-rollback-54652158fdf4

96

https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-automatic-rollout-abort-and-rollback-54652158fdf4
https://medium.com/@xpiotrkleban/full-automation-with-argo-rollout-blue-green-deployment-automatic-rollout-abort-and-rollback-54652158fdf4

37. WIP: Argo Workflows

37.1. Was ist Argo Workflows

* Argo: Workflow Engine for Kubernetes

37.2. Links / Cheatsheet

* https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

97

https://itnext.io/argo-workflow-engine-for-kubernetes-7ae81eda1cc5
https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

38. WIP: FluxCD

Flux the GitOps family of projects

38.1. Links

* https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-
a28497cd41e9

98

https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-a28497cd41e9
https://8grams.medium.com/fluxcd-install-the-most-popular-gitops-platform-on-kubernetes-a28497cd41e9

39. WIP: Hetzner - Cloud

coming soon

39.1. Links

e Private Network

* https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-
network

99

https://community.hetzner.com/tutorials/how-to-set-up-nat-for-cloud-networks/
https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-network
https://stackoverflow.com/questions/74989435/ansible-hetzner-cloud-create-a-server-in-private-network

40. WIP: Docker

40.1. Was ist Docker?
40.2. Funktionsweise

40.3. Haufig genutzte Commands

40.4. Links

 Stop using Alpine Image

* Understanding Docker image tags and publishing images to Docker Hub

100

https://medium.com/inside-sumup/stop-using-alpine-docker-images-fbf122c63010
https://itnext.io/understanding-docker-image-tags-and-publishing-images-to-docker-hub-b7a4f900f201

41. WIP: Crossplane

[logo] |
https://raw.githubusercontent.com/crossplane/crossplane/d910993255082fd3d302d19ac8c2682adbfla
606/docs/media/logo.svg

41.1. What is Crossplane

Crossplane is a framework for building cloud native control planes without needing to write code.
It has a highly extensible backend that enables you to build a control plane that can orchestrate
applications and infrastructure no matter where they run, and a highly configurable frontend that
puts you in control of the schema of the declarative API it offers.

Crossplane is a Cloud Native Compute Foundation project.

41.2. Links / Cheatsheet

* Getting started with crossplane

101

https://iamarunkrish.medium.com/getting-started-with-crossplane-b3c2bd7a61d5

42. WIP: Databases - An Overview
42.1. Postgesql

42.2. MariaDB

42.3. MongoDB

42.4. Links

102

43. WIP: GitLab

Webanwendung zur Versionsverwaltung auf Git-Basis

* Issue-Tracking-System mit Kanban-Board
* Continuous Integration und Continuous Delivery (CI/CD)
* Container-Registry

» API zur Steuerung von Gitlab

43.1. Links / Cheatsheet

* Cheat Sheet for DevOps: .gitlab-ci.yml (GitLab)

* Support for Git over SSH

103

https://brunodelb.medium.com/cheat-sheet-for-devops-gitlab-ci-yml-gitlab-2ffbf0c4f7ac
https://docs.gitlab.com/operator/git_over_ssh.html

44. WIP: Helm

HELM

44.1. Welches Problem wird mit Helm gelost?

44.2. Wie arbeitet Helm?

Helm In Kubernetes-- Part 1: Introduction

* Helm In Kubernetes — Part 2: How to create a simple Helm Chart

Helm In Kubernetes — Part 3: Hand on with Flow Control and Pipelines

Helm In Kubernetes — Part 4: Publish Helm Chart To Artifact Hub using Github Pages

44.3. Helm charts testen

* Kubernetes Helm Charts Testing

44.4. Good to know

» Using GitLab As Helm Chart Registry

44.5. Links / Cheatsheet

* Create a Helm chart & deploy a Kubernetes application using it.

* Helm 3 — Secrets management, an alternative approach

104

https://leeyoongti.medium.com/helm-in-kubernetes-part-1-introduction-81c810c8f486
https://medium.com/geekculture/helm-in-kubernetes-part-2-how-to-create-a-simple-helm-chart-af899fc2741d
https://leeyoongti.medium.com/helm-in-kubernetes-part-3-hand-on-with-flow-control-and-pipelines-68a984a7e851
https://leeyoongti.medium.com/helm-in-kubernetes-part-4-publish-helm-chart-to-artifact-hub-using-github-pages-ab7f55904faa
https://faun.pub/helm-charts-testing-2091a63a83af
https://betterprogramming.pub/using-gitlab-as-helm-chart-registry-ab4d4ef42833
https://shashanksrivastava.medium.com/create-a-helm-chart-deploy-a-kubernetes-application-using-it-b79b1d31afe4
https://itnext.io/helm-3-secrets-management-4f23041f05c3

45. WIP: Helm Dashboard

45.1. Links

* https://medium.com/geekculture/k8s-helm-dashboard-d7509c5fee88

105

https://medium.com/geekculture/k8s-helm-dashboard-d7509c5fee88

46. WIP: Kubernetes - debug

coming soon

106

47. WIP: k3s - Lightweight Kubernetes

47.1. Links

* https://k3s.i0

107

https://k3s.io

48. WIP: K8up - Kubernetes Backup Operator

K8up (pronounced /kerteepp/ or simply "ketchup") is a Kubernetes Operator distributed via a Helm
chart, compatible with OpenShift and plain Kubernetes. It allows cluster operators to:

Backup all PVCs marked as ReadWriteMany, ReadWriteOnce or with a specific label.
Perform individual, on-demand backups.

Schedule backups to be executed on a regular basis.

Schedule archivals (for example to AWS Glacier), usually executed in longer intervals.

Perform "Application Aware" backups, containing the output of any tool capable of writing to
stdout.

Check the backup repository for its integrity.

Prune old backups from a repository.

Restore backups with the help of the k8up CLI tool.

Based on top of Restic, it can store backups in any S3-compatible storage, such as Amazon S3 or
Minio.

K8up is written in Go and is an Open Source project hosted at GitHub.

48.1. How to Install K8up

coming soon

48.2. Links

108

https://k8up.io

https://k8up.io

49. WIP: kOps - Kubernetes Operations

The easiest way to get a production grade Kubernetes cluster up and running.

49.1. What is kOps?

We like to think of it as kubectl for clusters.

kops will not only help you create, destroy, upgrade and maintain production-grade, highly
available, Kubernetes cluster, but it will also provision the necessary cloud infrastructure.

AWS (Amazon Web Services) and GCE (Google Cloud Platform) are currently officially supported,
with DigitalOcean, Hetzner and OpenStack in beta support, and Azure in alpha.

49.2. Features

* Automates the provisioning of Highly Available Kubernetes clusters
* Built on a state-sync model for dry-runs and automatic idempotency
* Ability to generate Terraform

» Supports zero-config managed kubernetes add-ons

* Command line autocompletion

* YAML Manifest Based API Configuration

* Templating and dry-run modes for creating Manifests

* Choose from most popular CNI Networking providers out-of-the-box
* Multi-architecture ready with ARM64 support

* Capability to add containers, as hooks, and files to nodes via a cluster manifest

49.3. Installing

49.3.1. Prerequisite

kubectl is required, see here.

49.3.2. Linux

1 curl -Lo kops https://github.com/kubernetes/kops/releases/download/$(curl -s
https://api.github.com/repos/kubernetes/kops/releases/latest | grep tag_name | cut
-d """ -f 4)/kops-linux-amd64

2 chmod +x kops

3 sudo mv kops /usr/local/bin/kops

109

49.4. Links

* Getting started

110

https://kops.sigs.k8s.io/getting_started/

50. WIP: Kind - Kubernetes in Docker

Kind ist ein Werkzeug zum Betreiben lokaler Kubernetes-Cluster unter Verwendung von Docker-
Container ,Knoten". Kind wurde hauptsachlich zum Testen von Kubernetes selbst entwickelt, kann
aber auch fiir lokale Entwicklung oder CI verwendet werden.

50.1. Installation

Linux

1 # For AMD64 / x86_064

2 [$(uname -m) = x86_64] && curl -Lo ./kind
https://kind.sigs.k8s.10/d1/v0.20.0/kind-1inux-amd64

3 # For ARMb64

4 [$(uname -m) = aarch64] && curl -Lo ./kind
https://kind.sigs.k8s.10/d1/v0.20.0/kind-1inux-armb4

5 chmod +x ./kind

6 sudo mv ./kind /usr/local/bin/kind

50.2. Create Cluster

111

51. WIP: Kubespay

51.1. Was ist kubespay

Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain
knowledge for generic OS/Kubernetes clusters configuration management tasks.

Kubespray provides:
Highly available cluster. Composable (Choice of the network plugin for instance).
Supports most popular Linux distributions:

Flatcar Container Linux by Kinvolk Debian Bullseye, Buster, Jessie, Stretch Ubuntu 16.04, 18.04,
20.04, 22.04 CentOS/RHEL 7, 8, 9 Fedora 35, 36 Fedora CoreOS openSUSE Leap 15.x/Tumbleweed
Oracle Linux 7, 8, 9 Alma Linux 8, 9 Rocky Linux 8, 9 Kylin Linux Advanced Server V10 Amazon
Linux 2 Continuous integration tests.

51.2. Links / Cheatsheets

* https://link.medium.com/jKNWyPVkwub

112

https://link.medium.com/jkNWyPVkwub

52. WIP: Kubesphere

52.1. Was ist Kubesphere?

KubeSphere ist eine offene Plattform fiir die Unternehmensklasse, die auf Kubernetes aufbaut und
Anwendern eine einfache Moglichkeit zur Konfiguration, Bereitstellung und Verwaltung von
Anwendungen auf Kubernetes bietet, unabhédngig davon, ob diese Anwendungen in 6ffentlichen
Clouds, privaten Clouds oder On-Premises-Servern bereitgestellt werden.

KubeSphere bietet eine Reihe von Funktionen wie Multi-Tenancy-Management,
Netzwerkverwaltung, Speicherverwaltung, DevOps, Anwendungsmanagement und mehr. Es
unterstitzt auch mehrere Netzwerk-Plugins, Integration von Persistent-Volume-Providern und
Plugin-Erweiterungen, um die Komplexitat der Kubernetes-Plattform zu minimieren.

Die Plattform wurde entwickelt, um Unternehmen dabei zu helfen, ihre Microservices-
Architekturen und DevOps-Prozesse zu optimieren, und bietet einen einheitlichen Bereich zur
Verwaltung ihrer gesamten Infrastruktur und Anwendungen.

52.2. Links

* Air gapped installation

113

https://www.kubesphere.io/docs/v3.3/installing-on-linux/introduction/air-gapped-installation/

53. WIP: KubeVela

53.1. Was ist KubeVela?

KubeVela ist eine einfach zu bedienende und dennoch extrem flexible Kubernetes-Plattform fiir
Entwickler. KubeVela bietet eine Reihe von Funktionen, die Entwicklern helfen, ihre Anwendungen
effizient zu entwickeln, zu testen, zu bereitstellen und zu skalieren.

53.2. Vorteile von KubeVela

Die

Verwendung von KubeVela bietet eine Reihe von Vorteilen:

Einfache Bedienung: KubeVela bietet eine vereinfachte Benutzererfahrung, die es Entwicklern
ermoglicht, sich auf das Schreiben von Code zu Kkonzentrieren, anstatt sich mit
Infrastrukturdetails zu befassen.

Extreme Flexibilitat: Mit KubeVela konnen Entwickler jede Art von Anwendung auf
Kubernetes bereitstellen, von einfachen Microservices bis hin zu komplexen Anwendungen mit
mehreren Komponenten.

Applikationsorientierter Ansatz: Im Gegensatz zu anderen Kubernetes-Plattformen, die
infrastrukturorientiert sind, ist KubeVela anwendungsorientiert. Dies bedeutet, dass die
Anwendung und nicht die Infrastruktur im Mittelpunkt steht.

Interoperabilitdat: KubeVela ist vollstdndig kompatibel mit allen bestehenden Kubernetes-
Erweiterungen und -Technologien. Dies bedeutet, dass Sie KubeVela nahtlos in Ihre bestehende
Kubernetes-Infrastruktur integrieren konnen.

53.3. Wie man KubeVela einsetzt

KubeVela kann in jeder Kubernetes-Umgebung verwendet werden. Sie konnen es auf Ihrem lokalen
Rechner, in Ihrer privaten Cloud oder in jeder offentlichen Cloud, die Kubernetes unterstiitzt,
einsetzen. Um KubeVela zu verwenden, installieren Sie es einfach in Threr Kubernetes-Umgebung
und verwenden dann das KubeVela-CLI, um Ihre Anwendungen zu definieren und zu verwalten.

53.4. Links

114

https://blog.devgenius.io/k8s-tools-kubevela-part-one-f93078b06ed5

https://blog.devgenius.io/k8s-tools-kubevela-part-one-f93078b06ed5

54. WIP: Loadbalancer for K8s

54.1. HAPROXY

Die Installation, Konfiguration und Nutzung eines HAProxy-Load-Balancers auf einem Ubuntu-
System erfolgt in mehreren Schritten. Hier ist eine grundlegende Anleitung:

54.1.1. Installation von HAProxy

1. Update des Systems: Aktualisieren Sie zuerst Ihre Paketlisten und Pakete, um sicherzustellen,
dass alles auf dem neuesten Stand ist. * sudo apt update sudo apt upgrade °

2. Installation von HAProxy: ' sudo apt install haproxy °

54.1.2. Grundkonfiguration von HAProxy

1. Backup der Konfigurationsdatei: Bevor Sie Anderungen vornehmen, erstellen Sie eine
Sicherungskopie der urspriinglichen Konfigurationsdatei. * sudo cp /etc/haproxy/haproxy.cfg
/etc/haproxy/haproxy.cfg.original °

2. Bearbeiten der Konfigurationsdatei: Offnen Sie die Konfigurationsdatei mit einem Texteditor
Threr Wahl (z.B. nano oder vim). * sudo nano /etc/haproxy/haproxy.cfg °

3. Konfiguration anpassen: Passen Sie die Konfigurationsdatei an Ihre Anforderungen an. Sie
miissen Abschnitte fiir defaults, frontend und backend definieren.

o defaults: Allgemeine Einstellungen wie Zeitlimits.
o frontend: Definiert, wie HAProxy Anfragen von Clients empfangt.

o backend: Definiert, an welche Server die Anfragen weitergeleitet werden sollen.

.Beispiel fiir eine einfache Konfiguration, die den HTTP-Verkehr auf zwei
Webserver verteilt:
[source, yaml]
frontend http_front
bind *:80
default_backend http_back

backend http_back
balance roundrobin
server web1 192.168.1.1:80 check
server web2 192.168.1.2:80 check

54.1.3. HAProxy starten und testen

1. HAProxy neu starten: Nachdem Sie die Konfigurationsdatei bearbeitet haben, missen Sie

115

HAProxy neu starten, um die Anderungen zu iibernehmen.

sudo systemctl restart haproxy

AUA AN

2. Status iiberpriifen: Stellen Sie sicher, dass HAProxy ordnungsgemafs lauft. * sudo systemctl
status haproxy °

3. Testen: Uberpriifen Sie, ob HAProxy wie erwartet funktioniert, indem Sie auf die IP-Adresse
oder den Domainnamen Ihres HAProxy-Servers zugreifen.

54.1.4. Zusitzliche Schritte und Tipps

 Sicherheit: Stellen Sie sicher, dass Thre HAProxy-Installation sicher ist. Dies kann die
Einrichtung von Firewalls, die Beschrankung des Zugriffs auf bestimmte IPs und die
Verwendung von HTTPS umfassen.

* Logging: Konfigurieren Sie Logging, um Probleme zu diagnostizieren und den Verkehr zu
uberwachen.

* Erweiterte Konfigurationen: HAProxy bietet viele erweiterte Optionen wie SSL/TLS-
Terminierung, Session-Persistenz, HTTP/2-Unterstitzung und mehr.

54.2. Links

116

55. WIP: Rancher

55.1. Links

* https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-
Anforderungen-haerten-9009530.html

117

https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-Anforderungen-haerten-9009530.html
https://www.heise.de/tests/Kubernet-Sicherheit-OpenShift-und-Rancher-nach-BSI-Anforderungen-haerten-9009530.html

56. WIP: RKE2 - Rancher

coming soon

56.1. Install

56.1.1. ARM64

mkdir /root/rke2-artifacts && cd /root/rke2-artifacts/

wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2-
images.linux-arm64.tar.gz

wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2.1inux-
armb4.tar.gz

wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/sha256sum-
armo4. txt

curl -sfL https://get.rke2.io0 --output install.sh
INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh install.sh

systemctl enable rke2-server
systemctl start rke2-server

Kubectl

curl -LO https://dl.k8s.io/release/v1.28.4/bin/1linux/armb64/kubectl
install kubectl /usr/local/bin
rm kubectl -f

56.2. Create Aliase

alias cn="kubectl config set-context --current --namespace="
alias k="kubectl'

alias po='kubectl get po -A'

alias epo='kubectl get po -A | grep -v "Running|Complited"’

56.3. Links

* Offizelle Doku

118

https://docs.rke2.io/

57. WIP: Longhorn

coming soon

119

58. WIP: Velero

Velero (formerly Heptio Ark) gives you tools to back up and restore your Kubernetes cluster
resources and persistent volumes. You can run Velero with a cloud provider or on-premises. Velero

lets you:

» Take backups of your cluster and restore in case of loss.
* Migrate cluster resources to other clusters.

* Replicate your production cluster to development and testing clusters.

Velero consists of:

* server that runs on your cluster

* command-line client that runs locally

58.1. Links

* https://velero.io

120

https://velero.io

59. WIP: Kubernetes

[Kubernetes logo] | https:/upload.wikimedia.org/wikipedia/commons/6/67/Kubernetes_logo.svg

* Bare Metal Kubernetes with MetalLB, HAProxy, Longhorn, and Prometheus
e Kubernetes (K8s) Zero to Hero

* My Kubernetes Homelab project

59.1. Dashbhoard

* Kubernetes Dashboards: Octant

59.2. Authentication

* Kubernetes and LDAP: Enterprise Authentication for Kubernetes

* https://loft-sh.medium.com/10-essentials-for-kubernetes-access-control-a67ae72977dd[10
Essentials for Kubernetes Access Control

59.3. Downscaler

* How to scale down Kubernetes cluster workloads during off-hours

59.4. Ingress

 Setting Up an On-premise Kubernetes Cluster from Scratch
* Kubernetes Ingress Deep Dive

* Kubernetes Gateway API— A successor to existing Kubernetes Ingress!

59.5. Registry

* Install a Private Docker Container Registry in Kubernetes

59.6. Persistant Storage

* Kubernetes Persistent Volumes: Examples & Best Practices Kubernetes Storage —Part 1 —NFS
complete tutorial

59.7. Kubernetes - Backup / Restore

» Kasten - Kubernetes backup & restore is now effortless

121

https://medium.com/geekculture/bare-metal-kubernetes-with-metallb-haproxy-longhorn-and-prometheus-370ccfffeba9
https://medium.com/data-revolution/kubernetes-k8s-zero-to-hero-9d49d13954a
https://medium.com/@ilankushnir/kws-cluster-e7e079cf103b
https://loft-sh.medium.com/kubernetes-dashboards-octant-43603005858a
https://loft-sh.medium.com/kubernetes-and-ldap-enterprise-authentication-for-kubernetes-91fb2f2e8942
https://loft-sh.medium.com/10-essentials-for-kubernetes-access-control-a67ae72977dd
https://tanmay-bhat.medium.com/how-to-scale-down-kubernetes-cluster-workloads-during-off-hours-fe4bc477ed51
https://medium.com/@ZiXianZeroX/setting-up-an-on-premise-kubernetes-cluster-from-scratch-8e3a6b415387
https://luandy-4171.medium.com/kubernetes-ingress-deep-dive-275b0d42e9ba
https://sanjimoh.medium.com/kubernetes-gateway-api-a-successor-to-existing-kubernetes-ingress-19bb3bebbb74
https://faun.pub/install-a-private-docker-container-registry-in-kubernetes-7fb25820fc61
https://loft-sh.medium.com/kubernetes-persistent-volumes-examples-best-practices-a201c6403845
https://itnext.io/kubernetes-storage-part-1-nfs-complete-tutorial-75e6ac2a1f77
https://itnext.io/kubernetes-storage-part-1-nfs-complete-tutorial-75e6ac2a1f77
https://medium.com/geekculture/kubernetes-backup-restore-is-now-effortless-e788fccd8cde

59.8. Kubernetes Operator

* Build a Kubernetes Operator in 10 Minutes

59.9. Multi-Tenant

» Multi-Tenant Kubernetes Clusters: Challenges and Useful Tooling

59.10. Networking

* https://opensource.com/article/22/6/kubernetes-networking-fundamentals

59.11. k3s

* The Ultimate Guide to Building Your Personal K3S Cluster

* Creating a Local Development Kubernetes Cluster with K3D and Traefik Proxy

59.12. KubeVirt

 Virtuelle Maschinen: KubeVirt als bevorzugtes Tool fir VM-Betrieb auf Kubernetes

59.13. Kosten Management

* The Cost of Managed Kubernetes — A Comparison
* https://loft.sh/

* Checklist for Kubernetes-Based Development

59.14. Howto’s

* Migrating applications between Kubernetes clusters

59.15. Other Tools

» Reload configmap without restarting the pod
* Kr8s — Seamless Kubernetes Cluster Data Visualization
* Rancher Desktop and nerdctl for local K8s dev

* How to Set Kubernetes Resource Requests and Limits

6 Tools to Run Kubernetes Locally

59.16. Links / Cheatsheets

* Kubernetes Multi-Tenancy Approach

122

https://betterprogramming.pub/build-a-kubernetes-operator-in-10-minutes-11eec1492d30
https://loft-sh.medium.com/multi-tenant-kubernetes-clusters-challenges-and-useful-tooling-559079eb1ad9
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://itnext.io/the-ultimate-guide-to-building-your-personal-k3s-cluster-bf2643f31dd3
https://codeburst.io/creating-a-local-development-kubernetes-cluster-with-k3s-and-traefik-proxy-7a5033cb1c2d
https://www.heise.de/news/Virtuelle-Maschinen-KubeVirt-als-bevorzugtes-Tool-fuer-VM-Betrieb-auf-Kubernetes-7062397.html
https://loft-sh.medium.com/the-cost-of-managed-kubernetes-a-comparison-1f0a4b47bce1
https://loft.sh/
https://loft-sh.medium.com/checklist-for-kubernetes-based-development-46f384a0ff4f
https://medium.com/google-cloud/migrating-applications-between-kubernetes-clusters-8455cf1bfccd
https://mouliveera.medium.com/how-to-update-configmap-on-pod-without-restart-be3c0b4433af
https://medium.com/@kr8sdevelopers/kr8s-kubernetes-cluster-data-visualization-at-your-fingertips-ab4f8b4a2f0
https://itnext.io/rancher-desktop-and-nerdctl-for-local-k8s-dev-d1348629932a
https://itnext.io/how-to-set-kubernetes-resource-requests-and-limits-a-saga-to-improve-cluster-stability-and-a7b1800ecff1
https://yankeexe.medium.com/6-tools-to-run-kubernetes-locally-1655ebe0841e
https://towardsaws.com/kubernetes-multi-tenancy-approach-b0f58d615971

kubectl

Kubernetes: Apprentice Cookbook

Learn Kubernetes using Interactive Browser-Based Scenarios
Managing Kubernetes Using Kubectl — Cheat Sheet

* kubectl - Cheatsheet

123

https://kubernetes.io/de/docs/reference/kubectl/cheatsheet/
https://aveuiller.medium.com/kubernetes-apprentice-cookbook-90d8c11ccfc3
https://katacoda.com/courses/kubernetes/
https://levelup.gitconnected.com/managing-kubernetes-using-kubectl-cheat-sheet-19e39f206fe8
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

60. WIP: Kasten

124

61. WIP: Keycloak

125

62. WIP: RKE2 - Rancher

coming soon

62.1. Install

62.1.1. ARM64

1 mkdir /root/rke2-artifacts && cd /root/rke2-artifacts/

2 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2-
images.linux-arm64.tar.gz

3 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/rke2.1inux-
armo4.tar.gz

4 wget https://github.com/rancher/rke2/releases/download/v1.27.3%2Brke2r1/sha256sum-
armo4.txt

5 curl -sfL https://get.rke2.i0 --output install.sh

6 INSTALL_RKE2_TYPE=agent INSTALL_RKE2_ARTIFACT_PATH=/root/rke2-artifacts sh
install.sh

systemctl enable rke2-server
9 systemctl start rke2-server

Kubectl

1 curl -LO https://dl.k8s.i0/release/v1.28.4/bin/1linux/arm64/kubectl
2 install kubectl /usr/local/bin
3 rm kubectl -f

1 curl -LO
https://qgithub.com/derailed/k9s/releases/download/v@.29.1/k9s_Linux_arm64.tar.gz

2 tar xvzf k9s_Linux_armb4.tar.gz k9s

3 install k9s /usr/local/bin

4 rm -f k9s k9s_Linux_armb4.tar.gz

62.2. Create Aliase

1 alias kcns="kubectl config set-context --current --namespace’
2 alias k="kubectl'

3 alias kpo='kubectl get po -A'

4 alias kepo='kubectl get po -A | grep -v "Running|Complited"’

126

62.3. Links

» Offizelle Doku

127

https://docs.rke2.io/

63. WIP: Kustomize

128

64. WIP: Monitoring

129

65. WIP: OpenLens

130

66. WIP: Planing - System Blueprints

66.1. Links

* https://blog.devgenius.io/system-design-blueprint-the-ultimate-guide-e27b914bf8f1

131

https://blog.devgenius.io/system-design-blueprint-the-ultimate-guide-e27b914bf8f1

67. WIP: Python

Python ist eine beliebte, hochrangige Programmiersprache, die fiir ihre Lesbarkeit und einfache
Syntax bekannt ist. Sie wird in vielen Bereichen wie Webentwicklung, Data Science, kiinstliche
Intelligenz, Maschinelles Lernen und mehr verwendet.

67.1. Einsatz

Mit Python kénnen Sie viele Dinge tun, zum Beispiel:

» Webseiten und Web-Apps erstellen (mit Frameworks wie Django oder Flask)
* Daten analysieren und visualisieren (mit Bibliotheken wie pandas, NumPy und matplotlib)

* Maschinelles Lernen und kiinstliche Intelligenz implementieren (mit Tools wie scikit-learn und
TensorFlow)

67.2. Lernen

Um Python zu lernen, konnen Sie die folgenden Schritte befolgen:

Grundlagen erlernen: Beginnen Sie mit den Grundlagen der Programmierung und der Python-
Syntax. Es gibt viele kostenlose Ressourcen online, wie zum Beispiel die offizielle Python-
Dokumentation oder Websites wie Codecademy und Coursera.

Praxisprojekte durchfithren: Wenden Sie das, was Sie gelernt haben, auf echte Projekte an. Das
kann so einfach sein wie ein Programm, das Text in der Konsole ausgibt, oder so komplex wie eine
voll funktionsfahige Web-App.

Erweiterung Ihrer Kenntnisse: Lernen Sie iber spezifische Bibliotheken und Frameworks in den
Bereichen, die Sie am meisten interessieren, wie z.B. Django fiir Webentwicklung oder TensorFlow
fir Maschinelles Lernen.

Gemeinschaft beitreten: Es gibt eine riesige und unterstiitzende Python-Gemeinschaft online.
Foren wie Stack Overflow und Reddit konnen hilfreiche Ressourcen sein, um Fragen zu stellen und
Antworten auf haufige Probleme zu finden.

132

68. WIP: Quarkus

68.1. Einleitung

Quarkus ist ein Kubernetes-native Java-Stack, der fiir die GraalvVM und HotSpot angepasst ist.

68.2. Vorteile

Quarkus zielt darauf ab, das Produktivitatsparadigma von Plattformen wie Node.js, Ruby on Rails
und Spring Boot in den Java-Okosystem zu bringen, wihrend es gleichzeitig schneller Boot-Zeit,
geringere Speicherauslastung, verbesserte Entwicklerfreundlichkeit und bessere Cloud-Integration
bietet.

68.3. Merkmale

+ Live Coding: Anderungen werden in Echtzeit in Threr laufenden Anwendung angezeigt.

* Imperative und Reaktive Stile: Quarkus vereinheitlicht die imperative und reaktive
Programmierung.

» Standardsbasiert: Quarkus verwendet bekannte Enterprise-APIs und Standards.

* Kubernetes-native: Es ist speziell fir GraalVM und HotSpot entwickelt und optimiert worden,
um die Anforderungen moderner Container und Cloud-Plattformen zu erfillen.

68.4. Links

* https://quarkus.io

133

https://quarkus.io

69. WIP: Teleport

69.1. Was ist Teleport

Identity-Native Infrastructure Access

Teleport replaces the #1 source of data breaches — secrets — with true identity to deliver phishing-
proof zero trust access for every engineer and service connected to your global infrastructure.

69.2. Links

* https://goteleport.com/

134

https://goteleport.com/

70. WIP: Artifactories
70.1. Harbor

70.2. Nexus

70.3. Registry (docker)

70.4. GitLab

135

71. WIP: Vaults

136

72. WIP: Quarkus

72.1. Einleitung

Quarkus ist ein Kubernetes-native Java-Stack, der fiir die GraalvVM und HotSpot angepasst ist.

72.2. Vortelle

Quarkus zielt darauf ab, das Produktivitatsparadigma von Plattformen wie Node.js, Ruby on Rails
und Spring Boot in den Java-Okosystem zu bringen, wihrend es gleichzeitig schneller Boot-Zeit,
geringere Speicherauslastung, verbesserte Entwicklerfreundlichkeit und bessere Cloud-Integration
bietet.

72.3. Merkmale

+ Live Coding: Anderungen werden in Echtzeit in Threr laufenden Anwendung angezeigt.

* Imperative und Reaktive Stile: Quarkus vereinheitlicht die imperative und reaktive
Programmierung.

Standardsbasiert: Quarkus verwendet bekannte Enterprise-APIs und Standards.

* Kubernetes-native: Es ist speziell fir GraalVM und HotSpot entwickelt und optimiert worden,
um die Anforderungen moderner Container und Cloud-Plattformen zu erfillen.

72.4. Links

* https://quarkus.io

137

https://quarkus.io

73. Sammlung niutzlicher Befehle und
Scripte

73.1. git
Abfrage und Sortierung von git-tags (grep -v "-" — blendet rc aus):

git tag --sort=-v:refname | grep -v "-" | head -n 3

Ausgabe:
v16.6.1

v16.6.0
v16.5.3

Abfrage und Sortierung von git remote repos
Abfrage von rke2 git repo
git -c¢ 'versionsort.suffix=-' 1ls-remote --exit-code --refs --sort="version:refname' \

--tags https://github.com/rancher/rke2.git '*.*.*" | grep -v - | \
grep "v1.26" | tail --lines=1 | cut --delimiter='/"' --fields=3

Ausgabe:

Latest version from rke2 for MINOR release v1.26
v1.26.13+rke2r1

73.2. kubectl

change namespace

kubectl config set-context --current --namespace=xxx

Show details of k8s nodes

kubectl describe nodes
or
kubectl describe node <nodename>

138

	GitOps / DevOps / AppOps / SRE: Konzepte & Tools
	Inhaltsverzeichnis
	1. WIP: Aktuelle ToDos
	2. WIP: Use Terraform and Ansible to setup K8s
	3. Einstieg in DevOps
	4. Kaniko
	5. Packer.io
	6. Skopeo
	7. Terraform
	8. ArgoCD
	9. GitLab Pipelines
	10. Gitlab pipelines in advanced
	11. Jenkins
	12. Tekton
	13. Kubernetes
	14. k9s
	15. kURL
	16. Podman
	17. Trivy
	18. Asciidoctor
	19. Hugo
	20. Git
	21. Semantic Versioning
	22. RKE2 - Rancher
	23. HAProxy
	24. Consul
	25. Tmux
	26. Vagrant
	27. Gegenüberstellung: Ansible, Chef, Puppet und SaltStack
	28. WIP: GitOps / DevOps / SRE: Konzepte & Tools
	29. WIP: DevOps - Konzepte
	30. WIP: Fähigkeiten für einen DevOps-Ingenieur
	31. Semantische Versionsbezeichnungen
	32. WIP: Ansible Semaphore
	33. WIP: Ansible: Eine Einführung und Leitfaden
	34. WIP: Best Practices for managing BASH Scripts
	35. WIP: Caching
	36. WIP: Argo-Rollouts
	37. WIP: Argo Workflows
	38. WIP: FluxCD
	39. WIP: Hetzner - Cloud
	40. WIP: Docker
	41. WIP: Crossplane
	42. WIP: Databases - An Overview
	43. WIP: GitLab
	44. WIP: Helm
	45. WIP: Helm Dashboard
	46. WIP: Kubernetes - debug
	47. WIP: k3s - Lightweight Kubernetes
	48. WIP: K8up - Kubernetes Backup Operator
	49. WIP: kOps - Kubernetes Operations
	50. WIP: Kind - Kubernetes in Docker
	51. WIP: Kubespay
	52. WIP: Kubesphere
	53. WIP: KubeVela
	54. WIP: Loadbalancer for K8s
	55. WIP: Rancher
	56. WIP: RKE2 - Rancher
	57. WIP: Longhorn
	58. WIP: Velero
	59. WIP: Kubernetes
	60. WIP: Kasten
	61. WIP: Keycloak
	62. WIP: RKE2 - Rancher
	63. WIP: Kustomize
	64. WIP: Monitoring
	65. WIP: OpenLens
	66. WIP: Planing - System Blueprints
	67. WIP: Python
	68. WIP: Quarkus
	69. WIP: Teleport
	70. WIP: Artifactories
	71. WIP: Vaults
	72. WIP: Quarkus
	73. Sammlung nützlicher Befehle und Scripte

